1887

Abstract

is a ubiquitous bacterium that is capable of surviving in a broad range of natural environments, including the human host, as either a natural commensal or an opportunistic pathogen involved in severe hospital-acquired infections. How such opportunistic pathogens cause fatal infections is largely unknown but it is likely that they are equipped with sophisticated systems to perceive external signals and interact with eukaryotic cells. Accordingly, being partially exposed at the cell exterior, some surface-associated proteins are involved in several steps of the infection process. Among them are lipoproteins, representing about 25 % of the surface-associated proteins, which could play a major role in bacterial virulence processes. This review focuses on the identification of 90 lipoprotein-encoding genes in the genome of the V583 clinical strain and their putative roles, and provides a transcriptional comparison of microarray data performed in environmental conditions including blood and urine. Taken together, these data suggest a potential involvement of lipoproteins in virulence, making them serious candidates for vaccine production.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053314-0
2011-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3001.html?itemId=/content/journal/micro/10.1099/mic.0.053314-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. An F. Y., Clewell D. B. ( 2002). Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis . J Bacteriol 184:1880–1887 [View Article][PubMed]
    [Google Scholar]
  3. An F. Y., Sulavik M. C., Clewell D. B. ( 1999). Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J Bacteriol 181:5915–5921[PubMed]
    [Google Scholar]
  4. Asanuma M., Kurokawa K., Ichikawa R., Ryu K. H., Chae J. H., Dohmae N., Lee B. L., Nakayama H. ( 2011). Structural evidence of α-aminoacylated lipoproteins of Staphylococcus aureus . FEBS J 278:716–728 [View Article][PubMed]
    [Google Scholar]
  5. Babu M. M., Priya M. L., Selvan A. T., Madera M., Gough J., Aravind L., Sankaran K. ( 2006). A database of bacterial lipoproteins (dolop) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773 [View Article][PubMed]
    [Google Scholar]
  6. Bagos P. G., Tsirigos K. D., Liakopoulos T. D., Hamodrakas S. J. ( 2008). Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res 7:5082–5093 [View Article][PubMed]
    [Google Scholar]
  7. Bøhle L. A., Riaz T., Egge-Jacobsen W., Skaugen M., Busk Ø. L., Eijsink V. G., Mathiesen G. ( 2011). Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics 12:135 [View Article][PubMed]
    [Google Scholar]
  8. Bourgogne A., Thomson L. C., Murray B. E. ( 2010). Bicarbonate enhances expression of the endocarditis and biofilm associated pilus locus, ebpRebpABC, in Enterococcus faecalis . BMC Microbiol 10:17 [View Article][PubMed]
    [Google Scholar]
  9. Braun V., Wu H. C. ( 1994). Lipoproteins, structure, function, biosynthesis and model for protein export. New Compr Biochem 27:319–341 [View Article]
    [Google Scholar]
  10. Bray B. A., Sutcliffe I. C., Harrington D. J. ( 2009). Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie van Leeuwenhoek 95:101–109 [View Article][PubMed]
    [Google Scholar]
  11. Brown J. S., Holden D. W. ( 2002). Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect 4:1149–1156 [View Article][PubMed]
    [Google Scholar]
  12. Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P. ( 2002). Surface proteins and the pathogenic potential of Listeria monocytogenes . Trends Microbiol 10:238–245 [View Article][PubMed]
    [Google Scholar]
  13. Chandler J. R., Dunny G. M. ( 2004). Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides 25:1377–1388 [View Article][PubMed]
    [Google Scholar]
  14. Chandler J. R., Dunny G. M. ( 2008). Characterization of the sequence specificity determinants required for processing and control of sex pheromone by the intramembrane protease Eep and the plasmid-encoded protein PrgY. J Bacteriol 190:1172–1183 [View Article][PubMed]
    [Google Scholar]
  15. Chow J. W., Thal L. A., Perri M. B., Vazquez J. A., Donabedian S. M., Clewell D. B., Zervos M. J. ( 1993). Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477[PubMed] [CrossRef]
    [Google Scholar]
  16. Chuang O. N., Schlievert P. M., Wells C. L., Manias D. A., Tripp T. J., Dunny G. M. ( 2009). Multiple functional domains of Enterococcus faecalis aggregation substance Asc10 contribute to endocarditis virulence. Infect Immun 77:539–548 [View Article][PubMed]
    [Google Scholar]
  17. Clewell D. B., An F. Y., Flannagan S. E., Antiporta M., Dunny G. M. ( 2000). Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol Microbiol 35:246–247 [View Article][PubMed]
    [Google Scholar]
  18. Cron L. E., Bootsma H. J., Noske N., Burghout P., Hammerschmidt S., Hermans P. W. ( 2009). Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner. Microbiology 155:2401–2410 [View Article][PubMed]
    [Google Scholar]
  19. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. ( 2004). WebLogo: a sequence logo generator. Genome Res 14:1188–1190 [View Article][PubMed]
    [Google Scholar]
  20. Denham E. L., Ward P. N., Leigh J. A. ( 2008). Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis . J Bacteriol 190:4641–4647 [View Article][PubMed]
    [Google Scholar]
  21. Detmers F. J., Lanfermeijer F. C., Poolman B. ( 2001). Peptides and ATP binding cassette peptide transporters. Res Microbiol 152:245–258 [View Article][PubMed]
    [Google Scholar]
  22. Dunny G. M., Brown B. L., Clewell D. B. ( 1978). Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75:3479–3483 [View Article][PubMed]
    [Google Scholar]
  23. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G. et al. & other authors ( 2010). The Pfam protein families database. Nucleic Acids Res 38:Database issueD211–D222 [View Article][PubMed]
    [Google Scholar]
  24. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., Bairoch A. ( 2005). Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook571–607 Walker J. M. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  25. Gupta S. D., Wu H. C. ( 1991). Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli . FEMS Microbiol Lett 78:37–42 [View Article][PubMed]
    [Google Scholar]
  26. Hamilton A., Robinson C., Sutcliffe I. C., Slater J., Maskell D. J., Davis-Poynter N., Smith K., Waller A., Harrington D. J. ( 2006). Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun 74:6907–6919 [View Article][PubMed]
    [Google Scholar]
  27. Hancock L. E., Gilmore M. S. ( 2002). The capsular polysaccharide of Enterococcus faecalis and its relationship to other polysaccharides in the cell wall. Proc Natl Acad Sci U S A 99:1574–1579 [View Article][PubMed]
    [Google Scholar]
  28. Härtel T., Klein M., Koedel U., Rohde M., Petruschka L., Hammerschmidt S. ( 2011). Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect Immun 79:44–58 [View Article][PubMed]
    [Google Scholar]
  29. Hayashi S., Wu H. C. ( 1990). Lipoproteins in bacteria. J Bioenerg Biomembr 22:451–471 [View Article][PubMed]
    [Google Scholar]
  30. Henneke P., Dramsi S., Mancuso G., Chraibi K., Pellegrini E., Theilacker C., Hübner J., Santos-Sierra S., Teti G. et al. & other authors ( 2008). Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol 180:6149–6158[PubMed] [CrossRef]
    [Google Scholar]
  31. Hermans P. W. M., Adrian P. V., Albert C., Estevão S., Hoogenboezem T., Luijendijk I. H. T., Kamphausen T., Hammerschmidt S. ( 2006). The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl–prolyl isomerase involved in pneumococcal colonization. J Biol Chem 281:968–976 [View Article][PubMed]
    [Google Scholar]
  32. Hufnagel M., Hancock L. E., Koch S., Theilacker C., Gilmore M. S., Huebner J. ( 2004). Serological and genetic diversity of capsular polysaccharides in Enterococcus faecalis . J Clin Microbiol 42:2548–2557 [View Article][PubMed]
    [Google Scholar]
  33. Hunt C. P. ( 1998). The emergence of enterococci as a cause of nosocomial infection. Br J Biomed Sci 55:149–156[PubMed]
    [Google Scholar]
  34. Hutchings M. I., Palmer T., Harrington D. J., Sutcliffe I. C. ( 2009). Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ’em, knowing when to fold ’em. Trends Microbiol 17:13–21 [View Article][PubMed]
    [Google Scholar]
  35. Jett B. D., Huycke M. M., Gilmore M. S. ( 1994). Virulence of enterococci. Clin Microbiol Rev 7:462–478[PubMed]
    [Google Scholar]
  36. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A. ( 2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662 [View Article][PubMed]
    [Google Scholar]
  37. Kovacs-Simon A., Titball R. W., Michell S. L. ( 2011). Lipoproteins of bacterial pathogens. Infect Immun 79:548–561 [View Article][PubMed]
    [Google Scholar]
  38. Kurokawa K., Lee H., Roh K. B., Asanuma M., Kim Y. S., Nakayama H., Shiratsuchi A., Choi Y., Takeuchi O. et al. & other authors ( 2009). The triacylated ATP binding cluster transporter substrate-binding lipoprotein of Staphylococcus aureus functions as a native ligand for the Toll-like receptor 2. J Biol Chem 284:8406–8411 [View Article][PubMed]
    [Google Scholar]
  39. Kyte J., Doolittle R. F. ( 1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [View Article][PubMed]
    [Google Scholar]
  40. Lebreton F., Riboulet-Bisson E., Serror P., Sanguinetti M., Posteraro B., Torelli R., Hartke A., Auffray Y., Giard J. C. ( 2009). ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence. Infect Immun 77:2832–2839 [View Article][PubMed]
    [Google Scholar]
  41. Lewenza S., Mhlanga M. M., Pugsley A. P. ( 2008). Novel inner membrane retention signals in Pseudomonas aeruginosa lipoproteins. J Bacteriol 190:6119–6125 [View Article][PubMed]
    [Google Scholar]
  42. Lowe A. M., Lambert P. A., Smith A. W. ( 1995). Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun 63:703–706[PubMed]
    [Google Scholar]
  43. Machata S., Tchatalbachev S., Mohamed W., Jänsch L., Hain T., Chakraborty T. G. ( 2008). Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol 181:2028–2035[PubMed] [CrossRef]
    [Google Scholar]
  44. Mayer M. L., Phillips C. M., Townsend R. A., Halperin S. A., Lee S. F. ( 2009). Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram-positive vaccine vector Streptococcus gordonii . Scand J Immunol 69:351–356 [View Article][PubMed]
    [Google Scholar]
  45. McBride S. M., Fischetti V. A., Leblanc D. J., Moellering R. C. Jr, Gilmore M. S. ( 2007). Genetic diversity among Enterococcus faecalis . PLoS ONE 2:e582 [View Article][PubMed]
    [Google Scholar]
  46. Moellering R. C. Jr ( 1998). Vancomycin-resistant enterococci. Clin Infect Dis 26:1196–1199 [View Article][PubMed]
    [Google Scholar]
  47. Murray B. E. ( 1990). The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65[PubMed]
    [Google Scholar]
  48. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E. ( 2006). Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest 116:2799–2807 [View Article][PubMed]
    [Google Scholar]
  49. Overweg K., Kerr A., Sluijter M., Jackson M. H., Mitchell T. J., de Jong A. P., de Groot R., Hermans P. W. ( 2000). The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 68:4180–4188 [View Article][PubMed]
    [Google Scholar]
  50. Papp-Wallace K. M., Maguire M. E. ( 2006). Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209 [View Article][PubMed]
    [Google Scholar]
  51. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. et al. & other authors ( 2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074 [View Article][PubMed]
    [Google Scholar]
  52. Qin X., Singh K. V., Weinstock G. M., Murray B. E. ( 2000). Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586 [View Article][PubMed]
    [Google Scholar]
  53. Rahman O., Cummings S. P., Harrington D. J., Sutcliffe I. C. ( 2008). Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J Microbiol Biotechnol 24:2377–2382 [View Article]
    [Google Scholar]
  54. Rajam G., Anderton J. M., Carlone G. M., Sampson J. S., Ades E. W. ( 2008). Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol 34:131–142 [View Article][PubMed]
    [Google Scholar]
  55. Rice L. B., Carias L., Rudin S., Vael C., Goossens H., Konstabel C., Klare I., Nallapareddy S. R., Huang W., Murray B. E. ( 2003). A potential virulence gene, hylEfm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512 [View Article][PubMed]
    [Google Scholar]
  56. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Höök M. ( 1999). Ace is a collagen-binding MSCRAMM from Enterococcus faecalis . J Biol Chem 274:26939–26945 [View Article][PubMed]
    [Google Scholar]
  57. Roche A. M., Weiser J. N. ( 2010). Identification of the targets of cross-reactive antibodies induced by Streptococcus pneumoniae colonization. Infect Immun 78:2231–2239 [View Article][PubMed]
    [Google Scholar]
  58. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M. ( 2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950 [View Article][PubMed]
    [Google Scholar]
  59. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. ( 1989). In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis . Antimicrob Agents Chemother 33:1588–1591[PubMed] [CrossRef]
    [Google Scholar]
  60. Sankaran K., Wu H. C. ( 1994). Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701–19706[PubMed]
    [Google Scholar]
  61. Schlievert P. M., Gahr P. J., Assimacopoulos A. P., Dinges M. M., Stoehr J. A., Harmala J. W., Hirt H., Dunny G. M. ( 1998). Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223[PubMed]
    [Google Scholar]
  62. Serebryakova M. V., Demina I. A., Galyamina M. A., Kondratov I. G., Ladygina V. G., Govorun V. M. ( 2011). The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii . J Biol Chem 286:22769–22776 [View Article][PubMed]
    [Google Scholar]
  63. Shah P., Swiatlo E. ( 2008). A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16 [View Article][PubMed]
    [Google Scholar]
  64. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S. ( 1999). Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67:193–200[PubMed]
    [Google Scholar]
  65. Shankar N., Lockatell C. V., Baghdayan A. S., Drachenberg C., Gilmore M. S., Johnson D. E. ( 2001). Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372 [View Article][PubMed]
    [Google Scholar]
  66. Shankar N., Baghdayan A. S., Gilmore M. S. ( 2002). Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis . Nature 417:746–750 [View Article][PubMed]
    [Google Scholar]
  67. Shin H. S., Xu F., Bagchi A., Herrup E., Prakash A., Valentine C., Kulkarni H., Wilhelmsen K., Warren S., Hellman J. ( 2011). Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo . J Immunol 186:1119–1130 [View Article][PubMed]
    [Google Scholar]
  68. Singh K. V., Coque T. M., Weinstock G. M., Murray B. E. ( 1998a). In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21:323–331[PubMed] [CrossRef]
    [Google Scholar]
  69. Singh K. V., Qin X., Weinstock G. M., Murray B. E. ( 1998b). Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 178:1416–1420 [View Article][PubMed]
    [Google Scholar]
  70. Sleator R. D., Wouters J., Gahan C. G., Abee T., Hill C. ( 2001). Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes . Appl Environ Microbiol 67:2692–2698 [View Article][PubMed]
    [Google Scholar]
  71. Solheim M., Aakra A., Vebø H., Snipen L., Nes I. F. ( 2007). Transcriptional responses of Enterococcus faecalis V583 to bovine bile and sodium dodecyl sulfate. Appl Environ Microbiol 73:5767–5774 [View Article][PubMed]
    [Google Scholar]
  72. Solheim M., Aakra A., Snipen L. G., Brede D. A., Nes I. F. ( 2009). Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics 10:194 [View Article][PubMed]
    [Google Scholar]
  73. Solheim M., Brekke M. C., Snipen L. G., Willems R. J., Nes I. F., Brede D. A. ( 2011). Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis . BMC Microbiol 11:3 [View Article][PubMed]
    [Google Scholar]
  74. Storf S., Pfeiffer F., Dilks K., Chen Z. Q., Imam S., Pohlschröder M. ( 2010). Mutational and bioinformatic analysis of haloarchaeal lipobox-containing proteins. Archaea 2010:410975 [View Article][PubMed]
    [Google Scholar]
  75. Sutcliffe I. C., Harrington D. J. ( 2002). Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148:2065–2077[PubMed]
    [Google Scholar]
  76. Sutcliffe I. C., Harrington D. J. ( 2004). Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 28:645–659 [View Article][PubMed]
    [Google Scholar]
  77. Sutcliffe I. C., Russell R. R. B. ( 1995). Lipoproteins of Gram-positive bacteria. J Bacteriol 177:1123–1128[PubMed]
    [Google Scholar]
  78. Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., Kiryutin B., Galperin M. Y., Fedorova N. D., Koonin E. V. ( 2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28 [View Article][PubMed]
    [Google Scholar]
  79. Teng F., Jacques-Palaz K. D., Weinstock G. M., Murray B. E. ( 2002). Evidence that the enterococcal polysaccharide antigen gene (epa) cluster is widespread in Enterococcus faecalis and influences resistance to phagocytic killing of E. faecalis . Infect Immun 70:2010–2015 [View Article][PubMed]
    [Google Scholar]
  80. Thompson B. J., Widdick D. A., Hicks M. G., Chandra G., Sutcliffe I. C., Palmer T., Hutchings M. I. ( 2010). Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor . Mol Microbiol 77:943–957[PubMed]
    [Google Scholar]
  81. Valenzuela A. S., Omar N. B., Abriouel H., López R. L., Ortega E., Cañamero M. M., Gálvez A. ( 2008). Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem Toxicol 46:2648–2652 [View Article][PubMed]
    [Google Scholar]
  82. Vebø H. C., Snipen L., Nes I. F., Brede D. A. ( 2009). The transcriptome of the nosocomial pathogen Enterococcus faecalis V583 reveals adaptive responses to growth in blood. PLoS ONE 4:e7660 [View Article][PubMed]
    [Google Scholar]
  83. Vebø H. C., Solheim M., Snipen L., Nes I. F., Brede D. A. ( 2010). Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE 5:e12489 [View Article][PubMed]
    [Google Scholar]
  84. Weston B. F., Brenot A., Caparon M. G. ( 2009). The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun 77:2840–2848 [View Article][PubMed]
    [Google Scholar]
  85. Widdick D. A., Hicks M. G., Thompson B. J., Tschumi A., Chandra G., Sutcliffe I. C., Brülle J. K., Sander P., Palmer T., Hutchings M. I. ( 2011). Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. . Mol Microbiol 80:1395–1412 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053314-0
Loading
/content/journal/micro/10.1099/mic.0.053314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error