1887

Abstract

Dominant selectable markers, reporter genes and regulatable systems remain powerful molecular tools for genetic and cell biology studies in fungi. Among , it is currently accepted that most species belonging to the genus have adopted a specific codon usage, whereby the CTG codon encodes serine instead of leucine. This group is now widely referred to as the CTG clade. For a long time, this uncommon genetic code has precluded the use of the available or bacterial markers and reporter systems for genetic studies in species. Over the last 15 years, increasing effort has been made to adapt drug-resistance markers, fluorescent protein variants, luciferase and recombinase genes to favour their expression in species related to the yeast CTG clade. In addition to the growing set of genome sequences, these codon-optimized molecular tools have progressively opened a window for the investigation of the conservation of gene function within species. These technical advances will also facilitate future genetic studies in non- (NAC) species and will help both in elucidating the molecular events underlying pathogenicity and antifungal resistance and in exploring the potential of yeast metabolic engineering.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055244-0
2012-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/585.html?itemId=/content/journal/micro/10.1099/mic.0.055244-0&mimeType=html&fmt=ahah

References

  1. Akinterinwa O., Khankal R., Cirino P. C. ( 2008). Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467 [View Article][PubMed]
    [Google Scholar]
  2. Austin S., Ziese M., Sternberg N. ( 1981). A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25:729–736 [View Article][PubMed]
    [Google Scholar]
  3. Basso L. R. Jr, Bartiss A., Mao Y., Gast C. E., Coelho P. S., Snyder M., Wong B. ( 2010). Transformation of Candida albicans with a synthetic hygromycin B resistance gene. Yeast 27:1039–1048 [View Article][PubMed]
    [Google Scholar]
  4. Becker J. M., Kauffman S. J., Hauser M., Huang L., Lin M., Sillaots S., Jiang B., Xu D., Roemer T. ( 2010). Pathway analysis of Candida albicans survival and virulence determinants in a murine infection model. Proc Natl Acad Sci U S A 107:22044–22049 [View Article][PubMed]
    [Google Scholar]
  5. Beckerman J., Chibana H., Turner J., Magee P. T. ( 2001). Single-copy IMH3 allele is sufficient to confer resistance to mycophenolic acid in Candida albicans and to mediate transformation of clinical Candida species. Infect Immun 69:108–114 [View Article][PubMed]
    [Google Scholar]
  6. Bernardo S. M., Khalique Z., Kot J., Jones J. K., Lee S. A. ( 2008). Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation. Fungal Genet Biol 45:861–877 [View Article][PubMed]
    [Google Scholar]
  7. Boeke J. D., LaCroute F., Fink G. R. ( 1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346 [View Article][PubMed]
    [Google Scholar]
  8. Buchholz F., Angrand P. O., Stewart A. F. ( 1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662 [View Article][PubMed]
    [Google Scholar]
  9. Butler G., Rasmussen M. D., Lin M. F., Santos M. A., Sakthikumar S., Munro C. A., Rheinbay E., Grabherr M., Forche A. & other authors ( 2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662 [View Article][PubMed]
    [Google Scholar]
  10. Carlisle P. L., Banerjee M., Lazzell A., Monteagudo C., López-Ribot J. L., Kadosh D. ( 2009). Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A 106:599–604 [View Article][PubMed]
    [Google Scholar]
  11. Cheon S. A., Han E. J., Kang H. A., Ogrydziak D. M., Kim J. Y. ( 2003). Isolation and characterization of the TRP1 gene from the yeast Yarrowia lipolytica and multiple gene disruption using a TRP blaster. Yeast 20:677–685 [View Article][PubMed]
    [Google Scholar]
  12. Cheon S. A., Choo J., Ubiyvovk V. M., Park J. N., Kim M. W., Oh D. B., Kwon O., Sibirny A. A., Kim J. Y., Kang H. A. ( 2009). New selectable host-marker systems for multiple genetic manipulations based on TRP1, MET2 and ADE2 in the methylotrophic yeast Hansenula polymorpha . Yeast 26:507–521 [View Article][PubMed]
    [Google Scholar]
  13. Cormack B. P., Valdivia R. H., Falkow S. ( 1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:1 Spec No33–38 [View Article][PubMed]
    [Google Scholar]
  14. Cormack B. P., Bertram G., Egerton M., Gow N. A., Falkow S., Brown A. J. P. ( 1997). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans . Microbiology 143:303–311 [View Article][PubMed]
    [Google Scholar]
  15. Courdavault V., Millerioux Y., Clastre M., Simkin A. J., Marais E., Crèche J., Giglioli-Guivarc’h N., Papon N. ( 2011). Fluorescent protein fusions in Candida guilliermondii . Fungal Genet Biol 48:1004–1011 [View Article][PubMed]
    [Google Scholar]
  16. d’Enfert C., Vecchiarelli A., Brown A. J. ( 2010). Bioluminescent fungi for real-time monitoring of fungal infections. Virulence 1:174–176 [View Article][PubMed]
    [Google Scholar]
  17. Delbrück S., Ernst J. F. ( 1993). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans . Mol Microbiol 10:859–866 [View Article][PubMed]
    [Google Scholar]
  18. Dennison P. M., Ramsdale M., Manson C. L., Brown A. J. ( 2005). Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol 42:737–748 [View Article][PubMed]
    [Google Scholar]
  19. Ding C., Butler G. ( 2007). Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 6:1310–1319 [View Article][PubMed]
    [Google Scholar]
  20. Dmytruk K. V., Voronovsky A. Y., Sibirny A. A. ( 2006). Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50:183–191 [View Article][PubMed]
    [Google Scholar]
  21. Dmytruk K. V., Yatsyshyn V. Y., Sybirna N. O., Fedorovych D. V., Sibirny A. A. ( 2011). Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab Eng 13:82–88 [View Article][PubMed]
    [Google Scholar]
  22. Doyle T. C., Nawotka K. A., Purchio A. F., Akin A. R., Francis K. P., Contag P. R. ( 2006a). Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog 40:69–81 [View Article][PubMed]
    [Google Scholar]
  23. Doyle T. C., Nawotka K. A., Kawahara C. B., Francis K. P., Contag P. R. ( 2006b). Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb Pathog 40:82–90 [View Article][PubMed]
    [Google Scholar]
  24. Enjalbert B., Rachini A., Vediyappan G., Pietrella D., Spaccapelo R., Vecchiarelli A., Brown A. J., d’Enfert C. ( 2009). A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect Immun 77:4847–4858 [View Article][PubMed]
    [Google Scholar]
  25. Fitzpatrick D. A., Logue M. E., Stajich J. E., Butler G. ( 2006). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99 [View Article][PubMed]
    [Google Scholar]
  26. Fitzpatrick D. A., Logue M. E., Butler G. ( 2008). Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis . BMC Evol Biol 8:181 [View Article][PubMed]
    [Google Scholar]
  27. Fitzpatrick D. A., O’Gaora P., Byrne K. P., Butler G. ( 2010). Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11:290[PubMed] [CrossRef]
    [Google Scholar]
  28. Gácser A., Salomon S., Schäfer W. ( 2005). Direct transformation of a clinical isolate of Candida parapsilosis using a dominant selection marker. FEMS Microbiol Lett 245:117–121 [View Article][PubMed]
    [Google Scholar]
  29. Gácser A., Trofa D., Schäfer W., Nosanchuk J. D. ( 2007). Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058 [View Article][PubMed]
    [Google Scholar]
  30. Gerami-Nejad M., Berman J., Gale C. A. ( 2001). Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans . Yeast 18:859–864 [View Article][PubMed]
    [Google Scholar]
  31. Gerami-Nejad M., Hausauer D., McClellan M., Berman J., Gale C. ( 2004). Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans . Yeast 21:429–436 [View Article][PubMed]
    [Google Scholar]
  32. Gerami-Nejad M., Dulmage K., Berman J. ( 2009). Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans . Yeast 26:399–406 [View Article][PubMed]
    [Google Scholar]
  33. Gola S., Martin R., Walther A., Dünkler A., Wendland J. ( 2003). New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20:1339–1347 [View Article][PubMed]
    [Google Scholar]
  34. Gossen M., Bonin A. L., Bujard H. ( 1993). Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 18:471–475 [View Article][PubMed]
    [Google Scholar]
  35. Hara A., Ueda M., Misawa S., Matsui T., Furuhashi K., Tanaka A. ( 2000). A mutated hygromycin resistance gene is functional in the n-alkane-assimilating yeast Candida tropicalis . Arch Microbiol 173:187–192 [View Article][PubMed]
    [Google Scholar]
  36. Hara A., Arie M., Kanai T., Matsui T., Matsuda H., Furuhashi K., Ueda M., Tanaka A. ( 2001). Novel and convenient methods for Candida tropicalis gene disruption using a mutated hygromycin B resistance gene. Arch Microbiol 176:364–369 [View Article][PubMed]
    [Google Scholar]
  37. Heim R., Tsien R. Y. ( 1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182 [View Article][PubMed]
    [Google Scholar]
  38. Jones E. W., Berget P. B., Burnette J. M. III, Anderson C., Asafu-Adjei D., Avetisian S., Barrie F., Chen R., Chu B. & other authors ( 2008). The spectrum of Trp mutants isolated as 5-fluoroanthranilate-resistant clones in Saccharomyces bayanus, S. mikatae and S. paradoxus . Yeast 25:41–46 [View Article][PubMed]
    [Google Scholar]
  39. Kakar S. N., Magee P. T. ( 1982). Genetic analysis of Candida albicans: identification of different isoleucine-valine, methionine, and arginine alleles by complementation. J Bacteriol 151:1247–1252[PubMed]
    [Google Scholar]
  40. Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S. ( 1989). The codon CUG is read as serine in an asporogenic yeast Candida cylindracea . Nature 341:164–166 [View Article][PubMed]
    [Google Scholar]
  41. Keppler-Ross S., Noffz C., Dean N. ( 2008). A new purple fluorescent color marker for genetic studies in Saccharomyces cerevisiae and Candida albicans . Genetics 179:705–710 [View Article][PubMed]
    [Google Scholar]
  42. Köhler G. A., White T. C., Agabian N. ( 1997). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338[PubMed]
    [Google Scholar]
  43. Köhler G. A., Gong X., Bentink S., Theiss S., Pagani G. M., Agabian N., Hedstrom L. ( 2005). The functional basis of mycophenolic acid resistance in Candida albicans IMP dehydrogenase. J Biol Chem 280:11295–11302 [View Article][PubMed]
    [Google Scholar]
  44. Kosa P., Gavenciakova B., Nosek J. ( 2007). Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis . Gene 396:338–345 [View Article][PubMed]
    [Google Scholar]
  45. Kur K., Gabriel I., Morschhäuser J., Barchiesi F., Spreghini E., Milewski S. ( 2010). Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence. Mycopathologia 170:397–402 [View Article][PubMed]
    [Google Scholar]
  46. Laplaza J. M., Rivas Torres B., Jin Y.-S., Jeffries T. W. ( 2006). Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis . Enzyme Microb Technol 38:741–747 [View Article]
    [Google Scholar]
  47. Lebel K., MacPherson S., Turcotte B. ( 2006). New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Yeast 23:249–259 [View Article][PubMed]
    [Google Scholar]
  48. Leuker C. E., Hahn A. M., Ernst J. F. ( 1992). β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis . Mol Gen Genet 235:235–241 [View Article][PubMed]
    [Google Scholar]
  49. Leuker C. E., Sonneborn A., Delbrück S., Ernst J. F. ( 1997). Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans . Gene 192:235–240 [View Article][PubMed]
    [Google Scholar]
  50. Li D., Gurkovska V., Sheridan M., Calderone R., Chauhan N. ( 2004). Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology 150:3305–3313 [View Article][PubMed]
    [Google Scholar]
  51. Masuda Y., Park S. M., Ohkuma M., Ohta A., Takagi M. ( 1994). Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly-isolated phosphoglycerate kinase (PGK) gene. Curr Genet 25:412–417 [View Article][PubMed]
    [Google Scholar]
  52. Melo N. R., Moran G. P., Warrilow A. G., Dudley E., Smith S. N., Sullivan D. J., Lamb D. C., Kelly D. E., Coleman D. C., Kelly S. L. ( 2008). CYP56 (Dit2p) in Candida albicans: characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob Agents Chemother 52:3718–3724 [View Article][PubMed]
    [Google Scholar]
  53. Michel S., Ushinsky S., Klebl B., Leberer E., Thomas D., Whiteway M., Morschhäuser J. ( 2002). Generation of conditional lethal Candida albicans mutants by inducible deletion of essential genes. Mol Microbiol 46:269–280 [View Article][PubMed]
    [Google Scholar]
  54. Millerioux Y., Clastre M., Simkin A. J., Courdavault V., Marais E., Sibirny A. A., Noël T., Crèche J., Giglioli-Guivarc’h N., Papon N. ( 2011). Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEM Yeast Res 11:457–463 [View Article][PubMed]
    [Google Scholar]
  55. Milne S. W., Cheetham J., Lloyd D., Aves S., Bates S. ( 2011). Cassettes for PCR-mediated gene tagging in Candida albicans utilizing nourseothricin resistance. Yeast 28:833–841 [View Article][PubMed]
    [Google Scholar]
  56. Moreno-Ruiz E., Ortu G., de Groot P. W., Cottier F., Loussert C., Prévost M. C., de Koster C., Klis F. M., Goyard S., d’Enfert C. ( 2009). The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology 155:2004–2020 [View Article][PubMed]
    [Google Scholar]
  57. Morschhäuser J., Michel S., Hacker J. ( 1998). Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation. Mol Gen Genet 257:412–420 [View Article][PubMed]
    [Google Scholar]
  58. Morschhäuser J., Michel S., Staib P. ( 1999). Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Mol Microbiol 32:547–556 [View Article][PubMed]
    [Google Scholar]
  59. Morschhäuser J., Staib P., Köhler G. ( 2005). Targeted gene deletion in Candida albicans wild-type strains by MPAR flipping. Methods Mol Med 118:35–44[PubMed]
    [Google Scholar]
  60. Nakayama H., Mio T., Nagahashi S., Kokado M., Arisawa M., Aoki Y. ( 2000). Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans . Infect Immun 68:6712–6719 [View Article][PubMed]
    [Google Scholar]
  61. Nguyen L. N., Trofa D., Nosanchuk J. D. ( 2009). Fatty acid synthase impacts the pathobiology of Candida parapsilosis in vitro and during mammalian infection. PLoS ONE 4:e8421 [View Article][PubMed]
    [Google Scholar]
  62. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. ( 1998). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406 [View Article][PubMed]
    [Google Scholar]
  63. Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. ( 1993). Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21:4039–4045 [View Article][PubMed]
    [Google Scholar]
  64. Park Y. N., Morschhäuser J. ( 2005). Tetracycline-inducible gene expression and gene deletion in Candida albicans . Eukaryot Cell 4:1328–1342 [View Article][PubMed]
    [Google Scholar]
  65. Passoth V., Cohn M., Schäfer B., Hahn-Hägerdal B., Klinner U. ( 2003). Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51 [View Article][PubMed]
    [Google Scholar]
  66. Ramsdale M., Selway L., Stead D., Walker J., Yin Z., Nicholls S. M., Crowe J., Sheils E. M., Brown A. J. ( 2008). MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans . Mol Biol Cell 19:4393–4403 [View Article][PubMed]
    [Google Scholar]
  67. Reijnst P., Walther A., Wendland J. ( 2011). Dual-colour fluorescence microscopy using yEmCherry-/GFP-tagging of eisosome components Pil1 and Lsp1 in Candida albicans . Yeast 28:331–338 [View Article][PubMed]
    [Google Scholar]
  68. Reuss O., Vik A., Kolter R., Morschhäuser J. ( 2004). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans . Gene 341:119–127 [View Article][PubMed]
    [Google Scholar]
  69. Roemer T., Jiang B., Davison J., Ketela T., Veillette K., Breton A., Tandia F., Linteau A., Sillaots S. & other authors ( 2003). Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181 [View Article][PubMed]
    [Google Scholar]
  70. Rossignol T., Lechat P., Cuomo C., Zeng Q., Moszer I., d’Enfert C. ( 2008). CandidaDB: a multi-genome database for Candida species and related Saccharomycotina . Nucleic Acids Res 36:Database issueD557–D561 [View Article][PubMed]
    [Google Scholar]
  71. Samaranayake D. P., Hanes S. D. ( 2011). Milestones in Candida albicans gene manipulation. Fungal Genet Biol 48:858–865 [View Article][PubMed]
    [Google Scholar]
  72. Sánchez-Martínez C., Pérez-Martín J. ( 2002). Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Mol Genet Genomics 268:418–424 [View Article][PubMed]
    [Google Scholar]
  73. Saville S. P., Lazzell A. L., Monteagudo C., Lopez-Ribot J. L. ( 2003). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060 [View Article][PubMed]
    [Google Scholar]
  74. Saville S. P., Lazzell A. L., Bryant A. P., Fretzen A., Monreal A., Solberg E. O., Monteagudo C., Lopez-Ribot J. L., Milne G. T. ( 2006). Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob Agents Chemother 50:3312–3316 [View Article][PubMed]
    [Google Scholar]
  75. Schaub Y., Dünkler A., Walther A., Wendland J. ( 2006). New pFA-cassettes for PCR-based gene manipulation in Candida albicans . J Basic Microbiol 46:416–429 [View Article][PubMed]
    [Google Scholar]
  76. Shaner N. C., Campbell R. E., Steinbach P. A., Giepmans B. N., Palmer A. E., Tsien R. Y. ( 2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572 [View Article][PubMed]
    [Google Scholar]
  77. Shen J., Guo W., Köhler J. R. ( 2005). CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun 73:1239–1242 [View Article][PubMed]
    [Google Scholar]
  78. Skrzypek M. S., Arnaud M. B., Costanzo M. C., Inglis D. O., Shah P., Binkley G., Miyasato S. R., Sherlock G. ( 2010). New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res 38:Database issueD428–D432 [View Article][PubMed]
    [Google Scholar]
  79. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K., Laughlin L. A., Gorman J. A., Soll D. R. ( 1996). The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans . J Bacteriol 178:121–129[PubMed]
    [Google Scholar]
  80. Staib P., Kretschmar M., Nichterlein T., Köhler G., Michel S., Hof H., Hacker J., Morschhäuser J. ( 1999). Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32:533–546 [View Article][PubMed]
    [Google Scholar]
  81. Staib P., Kretschmar M., Nichterlein T., Hof H., Morschhäuser J. ( 2000a). Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A 97:6102–6107 [View Article][PubMed]
    [Google Scholar]
  82. Staib P., Michel S., Köhler G., Morschhäuser J. ( 2000b). A molecular genetic system for the pathogenic yeast Candida dubliniensis . Gene 242:393–398 [View Article][PubMed]
    [Google Scholar]
  83. Staib P., Moran G. P., Sullivan D. J., Coleman D. C., Morschhäuser J. ( 2001). Isogenic strain construction and gene targeting in Candida dubliniensis . J Bacteriol 183:2859–2865 [View Article][PubMed]
    [Google Scholar]
  84. Staib P., Lermann U., Blass-Warmuth J., Degel B., Würzner R., Monod M., Schirmeister T., Morschhäuser J. ( 2008). Tetracycline-inducible expression of individual secreted aspartic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrob Agents Chemother 52:146–156 [View Article][PubMed]
    [Google Scholar]
  85. Sternberg N., Hamilton D. ( 1981). Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486 [View Article][PubMed]
    [Google Scholar]
  86. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F. ( 1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991 [View Article][PubMed]
    [Google Scholar]
  87. Strauss A., Michel S., Morschhäuser J. ( 2001). Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans . J Bacteriol 183:3761–3769 [View Article][PubMed]
    [Google Scholar]
  88. Stynen B., Van Dijck P., Tournu H. ( 2010). A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans . Nucleic Acids Res 38:e184 [View Article][PubMed]
    [Google Scholar]
  89. Sugita T., Nakase T. ( 1999). Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida . Syst Appl Microbiol 22:79–86 [View Article][PubMed]
    [Google Scholar]
  90. Sugiyama H., Ohkuma M., Masuda Y., Park S. M., Ohta A., Takagi M. ( 1995). In vivo evidence for non-universal usage of the codon CUG in Candida maltosa . Yeast 11:43–52 [View Article][PubMed]
    [Google Scholar]
  91. Sundh I., Melin P. ( 2011). Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie van Leeuwenhoek 99:113–119 [View Article][PubMed]
    [Google Scholar]
  92. Tang S. J., Sun K. H., Sun G. H., Chang T. Y., Wu W. L., Lee G. C. ( 2003). A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa . J Microbiol Methods 52:231–238 [View Article][PubMed]
    [Google Scholar]
  93. Toyn J. H., Gunyuzlu P. L., White W. H., Thompson L. A., Hollis G. F. ( 2000). A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16:553–560 [View Article][PubMed]
    [Google Scholar]
  94. Tsao S., Rahkhoodaee F., Raymond M. ( 2009). Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352 [View Article][PubMed]
    [Google Scholar]
  95. Uhl M. A., Johnson A. D. ( 2001). Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans . Microbiology 147:1189–1195[PubMed]
    [Google Scholar]
  96. Urlinger S., Baron U., Thellmann M., Hasan M. T., Bujard H., Hillen W. ( 2000). Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97:7963–7968 [View Article][PubMed]
    [Google Scholar]
  97. Vetter D., Andrews B. J., Roberts-Beatty L., Sadowski P. D. ( 1983). Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci U S A 80:7284–7288 [View Article][PubMed]
    [Google Scholar]
  98. Walia A., Calderone R. ( 2008). The SSK2 MAPKKK of Candida albicans is required for oxidant adaptation in vitro. FEM Yeast Res 8:287–299 [View Article][PubMed]
    [Google Scholar]
  99. Wang X., Li G., Deng Y., Yu X., Chen F. ( 2006). A site-directed integration system for the nonuniversal CUG(Ser) codon usage species Pichia farinosa by electroporation. Arch Microbiol 184:419–424 [View Article][PubMed]
    [Google Scholar]
  100. Weld R. J., Plummer K. M., Carpenter M. A., Ridgway H. J. ( 2006). Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44 [View Article][PubMed]
    [Google Scholar]
  101. Wilson R. B., Davis D., Mitchell A. P. ( 1999). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874[PubMed]
    [Google Scholar]
  102. Wirsching S., Michel S., Morschhäuser J. ( 2000). Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36:856–865 [View Article][PubMed]
    [Google Scholar]
  103. Wirsching S., Moran G. P., Sullivan D. J., Coleman D. C., Morschhäuser J. ( 2001). MDR1-mediated drug resistance in Candida dubliniensis . Antimicrob Agents Chemother 45:3416–3421 [View Article][PubMed]
    [Google Scholar]
  104. Yang Y. L., Chen H. F., Kuo T. J., Lin C. Y. ( 2006). Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose. J Biomed Sci 13:313–321 [View Article][PubMed]
    [Google Scholar]
  105. Yehuda H., Droby S., Wisniewski M., Goldway M. ( 2001). A transformation system for the biocontrol yeast, Candida oleophila, based on hygromycin B resistance. Curr Genet 40:282–287 [View Article][PubMed]
    [Google Scholar]
  106. Zhang C., Konopka J. B. ( 2010). A photostable green fluorescent protein variant for analysis of protein localization in Candida albicans . Eukaryot Cell 9:224–226 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055244-0
Loading
/content/journal/micro/10.1099/mic.0.055244-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error