1887

Abstract

Culture supernatants of leptospiral pathogens have long been known to haemolyse erythrocytes. This property is due, at least in part, to sphingomyelinase activity. Indeed, genome sequencing reveals that pathogenic species are richly endowed with sphingomyelinase homologues: five genes have been annotated to encode sphingomyelinases in . Such redundancy suggests that this class of genes is likely to benefit leptospiral pathogens in their interactions with the mammalian host. Surprisingly, sequence comparison with bacterial sphingomyelinases for which the crystal structures are known reveals that only one of the leptospiral homologues has the active site amino acid residues required for enzymic activity. Based on studies of other bacterial toxins, we propose that leptospiral sphingomyelinase homologues, irrespective of their catalytic activity, may possess additional molecular functions that benefit the spirochaete. Potential secretion pathways and roles in pathogenesis are discussed, including nutrient acquisition, dissemination, haemorrhage and immune evasion. Although leptospiral sphingomyelinase-like proteins are best known for their cytolytic properties, we believe that a better understanding of their biological role requires the examination of their sublytic properties as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057737-0
2012-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/5/1137.html?itemId=/content/journal/micro/10.1099/mic.0.057737-0&mimeType=html&fmt=ahah

References

  1. Ago H., Oda M., Takahashi M., Tsuge H., Ochi S., Katunuma N., Miyano M., Sakurai J. ( 2006). Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus . J Biol Chem 281:16157–16167 [View Article][PubMed]
    [Google Scholar]
  2. Araujo E. R., Seguro A. C., Spichler A., Magaldi A. J., Volpini R. A., De Brito T. ( 2010). Acute kidney injury in human leptospirosis: an immunohistochemical study with pathophysiological correlation. Virchows Arch 456:367–375 [View Article][PubMed]
    [Google Scholar]
  3. Artiushin S., Timoney J. F., Nally J., Verma A. ( 2004). Host-inducible immunogenic sphingomyelinase-like protein, Lk73.5, of Leptospira interrogans . Infect Immun 72:742–749 [View Article][PubMed]
    [Google Scholar]
  4. Asuthkar S., Velineni S., Stadlmann J., Altmann F., Sritharan M. ( 2007). Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 75:4582–4591 [View Article][PubMed]
    [Google Scholar]
  5. Bernheimer A. W., Bey R. F. ( 1986). Copurification of Leptospira interrogans serovar pomona hemolysin and sphingomyelinase C. Infect Immun 54:262–264[PubMed]
    [Google Scholar]
  6. Bramley A. J., Patel A. H., O’Reilly M., Foster R., Foster T. J. ( 1989). Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 57:2489–2494[PubMed]
    [Google Scholar]
  7. Breslow D. K., Weissman J. S. ( 2010). Membranes in balance: mechanisms of sphingolipid homeostasis. Mol Cell 40:267–279 [View Article][PubMed]
    [Google Scholar]
  8. Bulach D., Seemann T., Zuerner R., Adler B. ( 2006a). The organization of Leptospira at a genomic level. Bacterial Genomes and Infectious Diseases109–123 Chan V. L., Sherman P. M., Bourke B. Totowa, USA: Humana press; [View Article]
    [Google Scholar]
  9. Bulach D. M., Zuerner R. L., Wilson P., Seemann T., McGrath A., Cullen P. A., Davis J., Johnson M., Kuczek E. & other authors ( 2006b). Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci U S A 103:14560–14565 [View Article][PubMed]
    [Google Scholar]
  10. Carvalho C. R., Bethlem E. P. ( 2002). Pulmonary complications of leptospirosis. Clin Chest Med 23:469–478 [View Article][PubMed]
    [Google Scholar]
  11. Carvalho E., Barbosa A. S., Gómez R. M., Cianciarullo A. M., Hauk P., Abreu P. A., Fiorini L. C., Oliveira M. L., Romero E. C., Gonçales A. P. ( 2009). Leptospiral TlyC is an extracellular matrix-binding protein and does not present hemolysin activity. FEBS Lett 583:1381–1385 [View Article][PubMed]
    [Google Scholar]
  12. Carvalho E., Barbosa A. S., Gómez R. M., Oliveira M. L., Romero E. C., Gonçales A. P., Morais Z. M., Vasconcellos S. A., Ho P. L. ( 2010). Evaluation of the expression and protective potential of leptospiral sphingomyelinases. Curr Microbiol 60:134–142 [View Article][PubMed]
    [Google Scholar]
  13. Clarke C. J., Wu B. X., Hannun Y. A. ( 2011). The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 51:51–58 [View Article][PubMed]
    [Google Scholar]
  14. del Real G., Segers R. P., van der Zeijst B. A., Gaastra W. ( 1989). Cloning of a hemolysin gene from Leptospira interrogans serovar hardjo. Infect Immun 57:2588–2590[PubMed]
    [Google Scholar]
  15. Dolhnikoff M., Mauad T., Bethlem E. P., Carvalho C. R. ( 2007). Pathology and pathophysiology of pulmonary manifestations in leptospirosis. Braz J Infect Dis 11:142–148 [View Article][PubMed]
    [Google Scholar]
  16. Feigin R. D., Anderson D. C., Heath C. W. ( 1975). Human leptospirosis. CRC Crit Rev Clin Lab Sci 5:413–467 [View Article][PubMed]
    [Google Scholar]
  17. Göggel R., Winoto-Morbach S., Vielhaber G., Imai Y., Lindner K., Brade L., Brade H., Ehlers S., Slutsky A. S. & other authors ( 2004). PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10:155–160 [View Article][PubMed]
    [Google Scholar]
  18. González-Zorn B., Domínguez-Bernal G., Suárez M., Ripio M. T., Vega Y., Novella S., Vázquez-Boland J. A. ( 1999). The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol 33:510–523 [View Article][PubMed]
    [Google Scholar]
  19. Grassmé H., Riehle A., Wilker B., Gulbins E. ( 2005). Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262 [View Article][PubMed]
    [Google Scholar]
  20. Gupta V. R., Patel H. K., Kostolansky S. S., Ballivian R. A., Eichberg J., Blanke S. R. ( 2008). Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 4:e1000073 [View Article][PubMed]
    [Google Scholar]
  21. Hannun Y. A., Obeid L. M. ( 2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150 [View Article][PubMed]
    [Google Scholar]
  22. Hayashida A., Bartlett A. H., Foster T. J., Park P. W. ( 2009). Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol 174:509–518 [View Article][PubMed]
    [Google Scholar]
  23. Heger A., Holm L. ( 2000). Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41:224–237 [View Article][PubMed]
    [Google Scholar]
  24. Henneberry R. C., Cox C. D. ( 1970). Beta-oxidation of fatty acids by Leptospira . Can J Microbiol 16:41–45 [View Article][PubMed]
    [Google Scholar]
  25. Huseby M., Shi K., Brown C. K., Digre J., Mengistu F., Seo K. S., Bohach G. A., Schlievert P. M., Ohlendorf D. H., Earhart C. A. ( 2007). Structure and biological activities of beta toxin from Staphylococcus aureus . J Bacteriol 189:8719–8726 [View Article][PubMed]
    [Google Scholar]
  26. Huseby M. J., Kruse A. C., Digre J., Kohler P. L., Vocke J. A., Mann E. E., Bayles K. W., Bohach G. A., Schlievert P. M. & other authors ( 2010). Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A 107:14407–14412 [View Article][PubMed]
    [Google Scholar]
  27. Inoshima I., Inoshima N., Wilke G. A., Powers M. E., Frank K. M., Wang Y., Bubeck Wardenburg J. ( 2011). A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314 [View Article][PubMed]
    [Google Scholar]
  28. Jenewein S., Barry Holland I., Schmitt L. ( 2009). Type I bacterial secretion systems. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis45–65 Wooldridge K. Hethersett, Norwich, UK: Caister Academic Press;
    [Google Scholar]
  29. Kasărov L. B. ( 1970). Degradiation of the erythrocyte phospholipids and haemolysis of the erythrocytes of different animal species by leptospirae. J Med Microbiol 3:29–37 [View Article][PubMed]
    [Google Scholar]
  30. Kăsarov L. B., Addamiano L. ( 1969). Degradation of the phospholipids of the serum lipoproteins by leptospirae. J Med Microbiol 2:243–248 [View Article][PubMed]
    [Google Scholar]
  31. Lafont F., van der Goot F. G. ( 2005). Bacterial invasion via lipid rafts. Cell Microbiol 7:613–620 [View Article][PubMed]
    [Google Scholar]
  32. Lee S. H., Kim K. A., Park Y. G., Seong I. W., Kim M. J., Lee Y. J. ( 2000). Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254:19–28 [View Article][PubMed]
    [Google Scholar]
  33. Lee S. H., Kim S., Park S. C., Kim M. J. ( 2002). Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 70:315–322 [View Article][PubMed]
    [Google Scholar]
  34. Lo M., Murray G. L., Khoo C. A., Haake D. A., Zuerner R. L., Adler B. ( 2010). Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78:4850–4859 [View Article][PubMed]
    [Google Scholar]
  35. Louvel H., Bommezzadri S., Zidane N., Boursaux-Eude C., Creno S., Magnier A., Rouy Z., Médigue C., Saint Girons I. & other authors ( 2006). Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188:7893–7904 [View Article][PubMed]
    [Google Scholar]
  36. Martinez-Lopez D. G., Fahey M., Coburn J. ( 2010). Responses of human endothelial cells to pathogenic and non-pathogenic Leptospira species. PLoS Negl Trop Dis 4:e918 [View Article][PubMed]
    [Google Scholar]
  37. Matsunaga J., Medeiros M. A., Sanchez Y., Werneid K. F., Ko A. I. ( 2007). Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release. Microbiology 153:3390–3398 [View Article][PubMed]
    [Google Scholar]
  38. Miller N. G., Allen J. E., Wilson R. B. ( 1974). The pathogenesis of hemorrhage in the lung of the hamster during acute leptospirosis. Med Microbiol Immunol (Berl) 160:269–278 [View Article][PubMed]
    [Google Scholar]
  39. Murtazina R., Kovbasnjuk O., Donowitz M., Li X. ( 2006). Na+/H+ exchanger NHE3 activity and trafficking are lipid Raft-dependent. J Biol Chem 281:17845–17855 [View Article][PubMed]
    [Google Scholar]
  40. Narayanavari S. A., Nanda Kishore M., Sritharan M. ( 2012). Structural analysis of the leptospiral sphingomyelinases: in silico and experimental evaluation of Sph2 as an Mg++-dependent sphingomyelinase. J Mol Microbiol Biotechnol 22:24–34 [CrossRef]
    [Google Scholar]
  41. Nascimento A. L., Ko A. I., Martins E. A., Monteiro-Vitorello C. B., Ho P. L., Haake D. A., Verjovski-Almeida S., Hartskeerl R. A., Marques M. V. & other authors ( 2004). Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172 [View Article][PubMed]
    [Google Scholar]
  42. Obama T., Fujii S., Ikezawa H., Ikeda K., Imagawa M., Tsukamoto K. ( 2003a). His151 and His296 are the acid-base catalytic residues of Bacillus cereus sphingomyelinase in sphingomyelin hydrolysis. Biol Pharm Bull 26:920–926 [View Article][PubMed]
    [Google Scholar]
  43. Obama T., Kan Y., Ikezawa H., Imagawa M., Tsukamoto K. ( 2003b). Glu-53 of Bacillus cereus sphingomyelinase acts as an indispensable ligand of Mg2+ essential for catalytic activity. J Biochem 133:279–286 [View Article][PubMed]
    [Google Scholar]
  44. Openshaw A. E., Race P. R., Monzó H. J., Vázquez-Boland J. A., Banfield M. J. ( 2005). Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria . J Biol Chem 280:35011–35017 [View Article][PubMed]
    [Google Scholar]
  45. Picardeau M., Bulach D. M., Bouchier C., Zuerner R. L., Zidane N., Wilson P. J., Creno S., Kuczek E. S., Bommezzadri S. & other authors ( 2008). Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS ONE 3:e1607 [View Article][PubMed]
    [Google Scholar]
  46. Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H., Zhang Y. X., Xiong H., Lu G. & other authors ( 2003). Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893 [View Article][PubMed]
    [Google Scholar]
  47. Ristow P., Bourhy P., Kerneis S., Schmitt C., Prevost M. C., Lilenbaum W., Picardeau M. ( 2008). Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154:1309–1317 [View Article][PubMed]
    [Google Scholar]
  48. Schnupf P., Portnoy D. A. ( 2007). Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9:1176–1187 [View Article][PubMed]
    [Google Scholar]
  49. Segers R. P., van der Drift A., de Nijs A., Corcione P., van der Zeijst B. A., Gaastra W. ( 1990). Molecular analysis of a sphingomyelinase C gene from Leptospira interrogans serovar hardjo. Infect Immun 58:2177–2185[PubMed]
    [Google Scholar]
  50. Segers R. P., van Gestel J. A., van Eys G. J., van der Zeijst B. A., Gaastra W. ( 1992). Presence of putative sphingomyelinase genes among members of the family Leptospiraceae . Infect Immun 60:1707–1710[PubMed]
    [Google Scholar]
  51. Sritharan M., Ramadevi S., Pasupala N., Tajne S., Asuthkar S. ( 2005). In silico identification and modelling of a putative iron-regulated TonB dependent outer membrane receptor protein from the genome of Leptospira interrogans serovar Lai. Online Journal of Bioinformatics 6:74–90
    [Google Scholar]
  52. Sueyoshi N., Kita K., Okino N., Sakaguchi K., Nakamura T., Ito M. ( 2002). Molecular cloning and expression of Mn2+-dependent sphingomyelinase/hemolysin of an aquatic bacterium, Pseudomonas sp. strain TK4. J Bacteriol 184:540–546 [View Article][PubMed]
    [Google Scholar]
  53. Toma C., Okura N., Takayama C., Suzuki T. ( 2011). Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages. Cell Microbiol 13:1783–1792 [View Article][PubMed]
    [Google Scholar]
  54. Tompa P. ( 2005). The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354 [View Article][PubMed]
    [Google Scholar]
  55. Velineni S., Ramadevi S., Asuthkar S., Sritharan M. ( 2009). Effect of iron deprivation on expression of sphingomyelinase in pathogenic serovar Lai. Online J Bioinform 10:241–258
    [Google Scholar]
  56. WHO ( 2003). Human Leptospirosis: Guidance for Diagnosis, Surveillance, and Control World Health Organization; http://whqlibdoc.who.int/hq/2003/WHO_CDS_CSR_EPH_2002.23.pdf
    [Google Scholar]
  57. Zager R. A. ( 2000). Plasma membrane cholesterol: a critical determinant of cellular energetics and tubular resistance to attack. Kidney Int 58:193–205 [View Article][PubMed]
    [Google Scholar]
  58. Zeidan Y. H., Hannun Y. A. ( 2007). Translational aspects of sphingolipid metabolism. Trends Mol Med 13:327–336 [View Article][PubMed]
    [Google Scholar]
  59. Zhang Y. X., Geng Y., Bi B., He J. Y., Wu C. F., Guo X. K., Zhao G. P. ( 2005). Identification and classification of all potential hemolysin encoding genes and their products from Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai. Acta Pharmacol Sin 26:453–461 [View Article][PubMed]
    [Google Scholar]
  60. Zhang Y. X., Geng Y., Yang J. W., Guo X. K., Zhao G. P. ( 2008). Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai. BMB Rep 41:119–125 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057737-0
Loading
/content/journal/micro/10.1099/mic.0.057737-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error