1887

Abstract

Only about half of bacterial species use an asparaginyl-tRNA synthetase (AsnRS) to attach Asn to its cognate tRNA. Other bacteria, including the human pathogen , a causative agent of otitis media, lack a gene encoding AsnRS, and form Asn-tRNA by an indirect pathway catalysed by two enzymes: first, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) catalyses the formation of aspartyl-tRNA (Asp-tRNA); then, a tRNA-dependent amidotransferase (GatCAB) transamidates this ‘incorrect’ product into Asn-tRNA. As has a Gln-tRNA synthetase, its GatCAB functions as an Asp-tRNA amidotransferase. This pathogen rapidly evolved to about 90 % ampicillin resistance worldwide by insertion of a β-lactamase gene within the operon. Comparison of the GatCAB subunits from β-lactamase-positive and -negative strains showed that the laterally transferred gene, inserted into the operon, affected the C-terminal sequence of GatA. The identity between the C-terminal sequences of GatA (residues 479–491) and of GatA (residues 479–492) was about 36 %, whereas the rest of the GatA sequence was relatively conserved. The characterization of these two distinct GatCABs as well as the hybrid GatCAB containing GatA(1–478)(479–492) and truncated GatCAB enzymes of showed that the substitution in GatA of residues 479–492 of GatA causes increased specificity for glutamine, and decreased specificity for Asp-tRNA in the transamidation reaction. We conclude that the gene insertion has altered the kinetic parameters of Asp-tRNA amidotransferase, and we propose a model for evolution after the insertion of at the carboxyl end of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.060095-0
2012-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/9/2363.html?itemId=/content/journal/micro/10.1099/mic.0.060095-0&mimeType=html&fmt=ahah

References

  1. Akochy P. M., Bernard D., Roy P. H., Lapointe J. ( 2004). Direct glutaminyl-tRNA biosynthesis and indirect asparaginyl-tRNA biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 186:767–776 [View Article][PubMed]
    [Google Scholar]
  2. Becker H. D., Kern D. ( 1998). Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci U S A 95:12832–12837 [View Article][PubMed]
    [Google Scholar]
  3. Becker H. D., Min B., Jacobi C., Raczniak G., Pelaschier J., Roy H., Klein S., Kern D., Söll D. ( 2000). The heterotrimeric Thermus thermophilus Asp-tRNAAsn amidotransferase can also generate Gln-tRNAGln.. FEBS Lett 476:140–144 [View Article][PubMed]
    [Google Scholar]
  4. Bootsma H. J., van Dijk H., Verhoef J., Fleer A., Mooi F. R. ( 1996). Molecular characterization of the BRO beta-lactamase of Moraxella (Branhamella) catarrhalis . Antimicrob Agents Chemother 40:966–972[PubMed]
    [Google Scholar]
  5. Bootsma H. J., van Dijk H., Vauterin P., Verhoef J., Mooi F. R. ( 2000). Genesis of BRO β-lactamase-producing Moraxella catarrhalis: evidence for transformation-mediated horizontal transfer. Mol Microbiol 36:93–104 [View Article][PubMed]
    [Google Scholar]
  6. Buckland S. T., Burnham K. P., Augustin N. H. ( 1997). Model selection: an integral part of inference. Biometrics 53:603–618 [View Article]
    [Google Scholar]
  7. Bullock T. L., Uter N., Nissan T. A., Perona J. J. ( 2003). Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J Mol Biol 328:395–408 [View Article][PubMed]
    [Google Scholar]
  8. Cudny H., Deutscher M. P. ( 1986). High-level overexpression, rapid purification, and properties of Escherichia coli tRNA nucleotidyltransferase. J Biol Chem 261:6450–6453[PubMed]
    [Google Scholar]
  9. Curnow A. W., Ibba M., Söll D. ( 1996). tRNA-dependent asparagine formation. Nature 382:589–590 [View Article][PubMed]
    [Google Scholar]
  10. Curnow A. W., Hong K., Yuan R., Kim S., Martins O., Winkler W., Henkin T. M., Söll D. ( 1997). Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A 94:11819–11826 [View Article][PubMed]
    [Google Scholar]
  11. Davie J. J., Earl J., de Vries S. P., Ahmed A., Hu F. Z., Bootsma H. J., Stol K., Hermans P. W., Wadowsky R. M. & other authors ( 2011). Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates. BMC Genomics 12:70 [View Article][PubMed]
    [Google Scholar]
  12. de Vries S. P., van Hijum S. A., Schueler W., Riesbeck K., Hays J. P., Hermans P. W., Bootsma H. J. ( 2010). Genome analysis of Moraxella catarrhalis strain RH4, a human respiratory tract pathogen. J Bacteriol 192:3574–3583 [View Article][PubMed]
    [Google Scholar]
  13. Decicco C. P., Nelson D. J., Luo Y., Shen L., Horiuchi K. Y., Amsler K. M., Foster L. A., Spitz S. M., Merrill J. J. & other authors ( 2001). Glutamyl-γ-boronate inhibitors of bacterial Glu-tRNAGln amidotransferase. Bioorg Med Chem Lett 11:2561–2564 [View Article][PubMed]
    [Google Scholar]
  14. Doern G. V., Brueggemann A. B., Pierce G., Hogan T., Holley H. P. Jr, Rauch A. ( 1996). Prevalence of antimicrobial resistance among 723 outpatient clinical isolates of Moraxella catarrhalis in the United States in 1994 and 1995: results of a 30-center national surveillance study. Antimicrob Agents Chemother 40:2884–2886[PubMed]
    [Google Scholar]
  15. Evans T. C. Jr, Benner J., Xu M. Q. ( 1999). The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 274:18359–18363 [View Article][PubMed]
    [Google Scholar]
  16. Feng L., Sheppard K., Tumbula-Hansen D., Söll D. ( 2005). Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase. J Biol Chem 280:8150–8155 [View Article][PubMed]
    [Google Scholar]
  17. Fischer F., Huot J. L., Lorber B., Diss G., Hendrickson T. L., Becker H. D., Lapointe J., Kern D. ( 2012). The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res 40:4965–4976 [View Article][PubMed]
    [Google Scholar]
  18. Horiuchi K. Y., Harpel M. R., Shen L., Luo Y., Rogers K. C., Copeland R. A. ( 2001). Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry 40:6450–6457 [View Article][PubMed]
    [Google Scholar]
  19. Huot J., Lapointe J., Chênevert R., Bailly M., Kern D. ( 2010). Glutaminyl-tRNA and asparaginyl-tRNA biosynthetic pathways and functions. Comprehensive Natural Products Chemistry II (CONAP II) vol. 5 Vederas J. C. Oxford, UK: Elsevier; [View Article]
    [Google Scholar]
  20. Ito T., Yokoyama S. ( 2010). Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature 467:612–616 [CrossRef]
    [Google Scholar]
  21. Lapointe J., Levasseur S., Kern D. ( 1985). Glutamyl-tRNA synthetase from Escherichia coli . Methods Enzymol 113:42–49 [View Article][PubMed]
    [Google Scholar]
  22. Lapointe J., Duplain L., Proulx M. ( 1986). A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln 1 in vitro. J Bacteriol 165:88–93[PubMed]
    [Google Scholar]
  23. Murphy T. F., Parameswaran G. I. ( 2009). Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49:124–131 [View Article][PubMed]
    [Google Scholar]
  24. Nakamura A., Yao M., Chimnaronk S., Sakai N., Tanaka I. ( 2006). Ammonia channel couples glutaminase with transamidase reactions in GatCAB. Science 312:1954–1958 [View Article][PubMed]
    [Google Scholar]
  25. Peng D., Hong W., Choudhury B. P., Carlson R. W., Gu X. X. ( 2005). Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 73:7569–7577 [View Article][PubMed]
    [Google Scholar]
  26. Raczniak G., Becker H. D., Min B., Söll D. ( 2001). A single amidotransferase forms asparaginyl-tRNA and glutaminyl-tRNA in Chlamydia trachomatis . J Biol Chem 276:45862–45867 [View Article][PubMed]
    [Google Scholar]
  27. Schimmel P. R., Söll D. ( 1979). Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48:601–648 [View Article][PubMed]
    [Google Scholar]
  28. Sheppard K., Akochy P. M., Salazar J. C., Söll D. ( 2007). The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. . J Biol Chem 282:11866–11873 [View Article][PubMed]
    [Google Scholar]
  29. Sheppard K., Sherrer R. L., Söll D. ( 2008). Methanothermobacter thermautotrophicus tRNAGln confines the amidotransferase GatCAB to asparaginyl-tRNAAsn formation. J Mol Biol 377:845–853 [View Article][PubMed]
    [Google Scholar]
  30. Strauch M. A., Zalkin H., Aronson A. I. ( 1988). Characterization of the glutamyl-tRNAGln-to-glutaminyl-tRNAGln amidotransferase reaction of Bacillus subtilis . J Bacteriol 170:916–920[PubMed]
    [Google Scholar]
  31. Tumbula D. L., Becker H. D., Chang W. Z., Söll D. ( 2000). Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407:106–110 [View Article][PubMed]
    [Google Scholar]
  32. Wallace R. J. Jr, Steingrube V. A., Nash D. R., Hollis D. G., Flanagan C., Brown B. A., Labidi A., Weaver R. E. ( 1989). BRO beta-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal beta-lactamase transfer by conjugation in B. catarrhalis, M. nonliquefaciens, and M. lacunata . Antimicrob Agents Chemother 33:1845–1854[PubMed] [CrossRef]
    [Google Scholar]
  33. Wallace R. J. Jr, Nash D. R., Steingrube V. A. ( 1990). Antibiotic susceptibilities and drug resistance in Moraxella (Branhamella) catarrhalis . Am J Med 88:5A46S–50S [View Article][PubMed]
    [Google Scholar]
  34. Wilcox M., Nirenberg M. ( 1968). Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A 61:229–236 [View Article][PubMed]
    [Google Scholar]
  35. Wu J., Bu W., Sheppard K., Kitabatake M., Kwon S. T., Söll D., Smith J. L. ( 2009). Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J Mol Biol 391:703–716 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.060095-0
Loading
/content/journal/micro/10.1099/mic.0.060095-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error