1887

Abstract

The oligotrophic bacterium has the ability to metabolize various organic molecules, including plant structural carbohydrates, as a carbon source. The nature of β-glucosidase (BGL)-mediated gluco-oligosaccharide degradation and nutrient transport across the outer membrane in was investigated. All gluco-oligosaccharides tested (up to celloheptose) supported growth in M2 minimal media but not cellulose or CM-cellulose. The periplasmic and outer membrane fractions showed highest BGL activity, but no significant BGL activity was observed in the cytosol or extracellular medium. Cells grown in cellobiose showed expression of specific BGLs and TonB-dependent receptors (TBDRs). Carbonyl cyanide 3-chlorophenylhydrazone lowered the rate of cell growth in cellobiose but not in glucose, indicating potential cellobiose transport into the cell by a proton motive force-dependent process, such as TBDR-dependent transport, and facilitated diffusion of glucose across the outer membrane via specific porins. These results suggest that acquires carbon from cellulose-derived gluco-oligosaccharides found in the environment by extracellular and periplasmic BGL activity and TBDR-mediated transport. This report on extracellular degradation of gluco-oligosaccharides and methods of nutrient acquisition by supports a broader suite of carbohydrate metabolic capabilities suggested by the genome sequence that until now have not been reported.

Funding
This study was supported by the:
  • Research Corporation for Science Advancement
  • Eastern Illinois University
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072314-0
2014-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/635.html?itemId=/content/journal/micro/10.1099/mic.0.072314-0&mimeType=html&fmt=ahah

References

  1. Adewoye L. O., Worobec E. A. ( 1999). Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa . Can J Microbiol 45:1033–1042[PubMed] [CrossRef]
    [Google Scholar]
  2. Ames G. F., Prody C., Kustu S. ( 1984). Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183[PubMed]
    [Google Scholar]
  3. Arellano B. H., Ortiz J. D., Manzano J., Chen J. C. ( 2010). Identification of a dehydrogenase required for lactose metabolism in Caulobacter crescentus . Appl Environ Microbiol 76:3004–3014 [View Article][PubMed]
    [Google Scholar]
  4. Auclair S. M., Bhanu M. K., Kendall D. A. ( 2012). Signal peptidase I: cleaving the way to mature proteins. Protein Sci 21:13–25 [View Article][PubMed]
    [Google Scholar]
  5. Blanvillain S., Meyer D., Boulanger A., Lautier M., Guynet C., Denancé N., Vasse J., Lauber E., Arlat M. ( 2007). Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224 [View Article][PubMed]
    [Google Scholar]
  6. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  7. Britos L., Abeliuk E., Taverner T., Lipton M., McAdams H., Shapiro L. ( 2011). Regulatory response to carbon starvation in Caulobacter crescentus . PLoS ONE 6:e18179 [View Article][PubMed]
    [Google Scholar]
  8. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B. ( 2009). The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:DatabaseD233–D238 [View Article][PubMed]
    [Google Scholar]
  9. Chang M. C. ( 2007). Harnessing energy from plant biomass. Curr Opin Chem Biol 11:677–684 [View Article][PubMed]
    [Google Scholar]
  10. Chatterjee D. K., Bourquin A. W. ( 1987). Metabolism of aromatic compounds by Caulobacter crescentus . J Bacteriol 169:1993–1996[PubMed]
    [Google Scholar]
  11. Coutinho P. M., Henrissat B. ( 1999). Carbohydrate-active enzymes: an integrated database approach. Recent Advances in Carbohydrate Bioengineering3–12 Gilbert H. J., Davies G., Henrissat B., Svensson B. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  12. de Jong A., Pietersma H., Cordes M., Kuipers O. P., Kok J. ( 2012). PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13:299 [View Article][PubMed]
    [Google Scholar]
  13. de Werra P., Péchy-Tarr M., Keel C., Maurhofer M. ( 2009). Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174 [View Article][PubMed]
    [Google Scholar]
  14. Dodd D., Mackie R. I., Cann I. K. ( 2011). Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes . Mol Microbiol 79:292–304 [View Article][PubMed]
    [Google Scholar]
  15. Eisenbeis S., Lohmiller S., Valdebenito M., Leicht S., Braun V. ( 2008). NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus . J Bacteriol 190:5230–5238 [View Article][PubMed]
    [Google Scholar]
  16. Ely B. ( 1991). Genetics of Caulobacter crescentus . Methods Enzymol 204:372–384[PubMed]
    [Google Scholar]
  17. Hancock R. E. W., Carey A. M. ( 1980). Protein D1—a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa . FEMS Microbiol Lett 8:105–109
    [Google Scholar]
  18. Harvey A. J., Hrmova M., De Gori R., Varghese J. N., Fincher G. B. ( 2000). Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269 [View Article][PubMed]
    [Google Scholar]
  19. Hirsch P. ( 1986). Microbial life at extremely low nutrient levels. Adv Space Res 6:287–298 [View Article][PubMed]
    [Google Scholar]
  20. Hottes A. K., Meewan M., Yang D., Arana N., Romero P., McAdams H. H., Stephens C. ( 2004). Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 186:1448–1461 [View Article][PubMed]
    [Google Scholar]
  21. Hrmova M., Fincher G. B. ( 1993). Purification and properties of three (1→3)-β-d-glucanase isoenzymes from young leaves of barley (Hordeum vulgare). Biochem J 289:453–461[PubMed]
    [Google Scholar]
  22. Hrmova M., MacGregor E. A., Biely P., Stewart R. J., Fincher G. B. ( 1998). Substrate binding and catalytic mechanism of a barley β-d-glucosidase/(1,4)-β-d-glucan exohydrolase. J Biol Chem 273:11134–11143 [View Article][PubMed]
    [Google Scholar]
  23. Ireland M. M., Karty J. A., Quardokus E. M., Reilly J. P., Brun Y. V. ( 2002). Proteomic analysis of the Caulobacter crescentus stalk indicates competence for nutrient uptake. Mol Microbiol 45:1029–1041 [View Article][PubMed]
    [Google Scholar]
  24. Iwamoto R., Imanaga Y. ( 1991). Direct evidence of the Entner-Doudoroff pathway operating in the metabolism of d-glucosamine in bacteria. J Biochem 109:66–69[PubMed]
    [Google Scholar]
  25. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A. ( 2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662 [View Article][PubMed]
    [Google Scholar]
  26. Keen N. T., Boyd C., Henrissat B. ( 1996). Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi . Mol Plant Microbe Interact 9:651–657 [View Article][PubMed]
    [Google Scholar]
  27. Kolbert C. P., Persing D. H. ( 1999). Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305 [View Article][PubMed]
    [Google Scholar]
  28. Kunst A., Draeger B., Ziegenhorn J. ( 1984). Colorimetric methods with glucose oxidase and peroxidase. Methods of Enzymatic Analysis, 3rd edn.178–185 Bergmeyer H. U. Weinheim: Verlag Chemie;
    [Google Scholar]
  29. Larsen B. S., Biedermann K. ( 1993). Isolation and characterization of the outer membrane proteins of Serratia marcescens W225. Anal Biochem 214:212–221 [View Article][PubMed]
    [Google Scholar]
  30. Laub M. T., Shapiro L., McAdams H. H. ( 2007). Systems biology of Caulobacter . Annu Rev Genet 41:429–441 [View Article][PubMed]
    [Google Scholar]
  31. Lee J. E., Ahn T. I. ( 2000). Periplasmic localization of a GroES homologue in Escherichia coli transformed with groESx cloned from Legionella-like endosymbionts in Amoeba proteus . Res Microbiol 151:605–618 [View Article][PubMed]
    [Google Scholar]
  32. Lessie T. G., Phibbs P. V. Jr ( 1984). Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol 38:359–388 [View Article][PubMed]
    [Google Scholar]
  33. Li Y., Irwin D. C., Wilson D. B. ( 2007). Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172 [View Article][PubMed]
    [Google Scholar]
  34. Lohmiller S., Hantke K., Patzer S. I., Braun V. ( 2008). TonB-dependent maltose transport by Caulobacter crescentus . Microbiology 154:1748–1754 [View Article][PubMed]
    [Google Scholar]
  35. Lymar E. S., Li B., Renganathan V. ( 1995). Purification and characterization of a cellulose-binding β-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium . Appl Environ Microbiol 61:2976–2980[PubMed]
    [Google Scholar]
  36. Mašková H. P., Vasilyeva L. V., Kofroňova O., Kunc F. ( 1988). Microflora participating in the decomposition of carboxymethyl cellulose continuously added to the soil. Folia Microbiol (Prague) 33:482–490 [View Article]
    [Google Scholar]
  37. Matsushita K., Shinagawa E., Ameyama M. ( 1982). d-Gluconate dehydrogenase from bacteria, 2-keto-d-gluconate-yielding, membrane-bound. Methods Enzymol 89:187–193[PubMed]
    [Google Scholar]
  38. Neeser J. R., Schweizer T. F. ( 1988). Analysis of Carbohydrates as O-Alkyloxime Derivatives by Gas-Liquid Chromatography Boca Raton, FL: CRC Press;
    [Google Scholar]
  39. Neu H. C., Heppel L. A. ( 1965). The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692[PubMed]
    [Google Scholar]
  40. Neugebauer H., Herrmann C., Kammer W., Schwarz G., Nordheim A., Braun V. ( 2005). ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus . J Bacteriol 187:8300–8311 [View Article][PubMed]
    [Google Scholar]
  41. Nierman W. C., Feldblyum T. V., Laub M. T., Paulsen I. T., Nelson K. E., Eisen J. A., Heidelberg J. F., Alley M. R., Ohta N. & other authors ( 2001). Complete genome sequence of Caulobacter crescentus . Proc Natl Acad Sci U S A 98:4136–4141 [View Article][PubMed]
    [Google Scholar]
  42. Nikaido H. ( 1994). Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem 269:3905–3908[PubMed]
    [Google Scholar]
  43. Ohashi-Kunihiro S., Yohda M., Masaki H., Machida M. ( 2007). A novel vector for positive selection of inserts harboring an open reading frame by translational coupling. Biotechniques 43:751–752, 754 [View Article][PubMed]
    [Google Scholar]
  44. Orphan V. J., Hinrichs K. U., Ussler W. III, Paull C. K., Taylor L. T., Sylva S. P., Hayes J. M., Delong E. F. ( 2001). Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934 [View Article][PubMed]
    [Google Scholar]
  45. Peekhaus N., Conway T. ( 1998). What’s for dinner?: Entner–Doudoroff metabolism in Escherichia coli . J Bacteriol 180:3495–3502[PubMed]
    [Google Scholar]
  46. Peekhaus N., Tong S., Reizer J., Saier M. H. Jr, Murray E., Conway T. ( 1997). Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues. FEMS Microbiol Lett 147:233–238 [View Article][PubMed]
    [Google Scholar]
  47. Poindexter J. S. ( 1964). Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295[PubMed]
    [Google Scholar]
  48. Postle K., Larsen R. A. ( 2007). TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453–465 [View Article][PubMed]
    [Google Scholar]
  49. Pradhan P., Li W., Kaur P. ( 2009). Translational coupling controls expression and function of the DrrAB drug efflux pump. J Mol Biol 385:831–842 [View Article][PubMed]
    [Google Scholar]
  50. Price M. N., Arkin A. P., Alm E. J. ( 2006). The life-cycle of operons. PLoS Genet 2:e96 [View Article][PubMed]
    [Google Scholar]
  51. Riley R. G., Kolodziej B. J. ( 1976). Pathway of glucose catabolism in Caulobacter crescentus . Microbios 16:219–226[PubMed]
    [Google Scholar]
  52. Rojas-Escudero E., Alarcón-Jiménez A. L., Elizalde-Galván P., Rojo-Callejas F. ( 2004). Optimization of carbohydrate silylation for gas chromatography. J Chromatogr A 1027:117–120 [View Article][PubMed]
    [Google Scholar]
  53. Sakon J., Irwin D., Wilson D. B., Karplus P. A. ( 1997). Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca . Nat Struct Biol 4:810–818 [View Article][PubMed]
    [Google Scholar]
  54. Schauer K., Rodionov D. A., de Reuse H. ( 2008). New substrates for TonB-dependent transport: do we only see the ‘tip of the iceberg’. Trends Biochem Sci 33:330–338 [View Article][PubMed]
    [Google Scholar]
  55. Shen H. B., Chou K. C. ( 2010). Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J Theor Biol 264:326–333 [View Article][PubMed]
    [Google Scholar]
  56. Shrivastava R., Basu B., Godbole A., Mathew M. K., Apte S. K., Phale P. S. ( 2011). Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86. Microbiology 157:1531–1540 [View Article][PubMed]
    [Google Scholar]
  57. Sigdel T. K., Cilliers R., Gursahaney P. R., Crowder M. W. ( 2004). Fractionation of soluble proteins in Escherichia coli using DEAE-, SP-, and phenyl sepharose chromatographies. J Biomol Tech 15:199–207[PubMed]
    [Google Scholar]
  58. Song N., Cai H. Y., Yan Z. S., Jiang H. L. ( 2013). Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresour Technol 131:281–287 [View Article][PubMed]
    [Google Scholar]
  59. Stephens C., Christen B., Watanabe K., Fuchs T., Jenal U. ( 2007). Regulation of d-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. J Bacteriol 189:8828–8834 [View Article][PubMed]
    [Google Scholar]
  60. Tamber S., Hancock R. E. ( 2003). On the mechanism of solute uptake in Pseudomonas . Front Biosci 8:s472–s483 [View Article][PubMed]
    [Google Scholar]
  61. Tokuda H. ( 2009). Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73:465–473 [View Article][PubMed]
    [Google Scholar]
  62. Tokuda H., Matsuyama S. ( 2004). Sorting of lipoproteins to the outer membrane in E. coli . Biochim Biophys Acta 1694:IN1–IN9[PubMed] [CrossRef]
    [Google Scholar]
  63. Tshala-Katumbay D., Monterroso V., Kayton R., Lasarev M., Sabri M., Spencer P. ( 2009). Probing mechanisms of axonopathy. Part II: protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane. Toxicol Sci 107:482–489 [View Article][PubMed]
    [Google Scholar]
  64. van den Berg B. ( 2012). Structural basis for outer membrane sugar uptake in pseudomonads. J Biol Chem 287:41044–41052 [View Article][PubMed]
    [Google Scholar]
  65. Wu X., Lei L., Gong S., Chen D., Flores R., Zhong G. ( 2011). The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol 11:87–102 [View Article][PubMed]
    [Google Scholar]
  66. Wylie J. L., Worobec E. A. ( 1995). The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa . J Bacteriol 177:3021–3026[PubMed]
    [Google Scholar]
  67. Yip V. L., Withers S. G. ( 2004). Nature’s many mechanisms for the degradation of oligosaccharides. Org Biomol Chem 2:2707–2713 [View Article][PubMed]
    [Google Scholar]
  68. Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., Dao P., Sahinalp S. C., Ester M. & other authors ( 2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615 [View Article][PubMed]
    [Google Scholar]
  69. Zhou W., Irwin D. C., Escovar-Kousen J., Wilson D. B. ( 2004). Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43:9655–9663 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072314-0
Loading
/content/journal/micro/10.1099/mic.0.072314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error