1887

Abstract

, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking and could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, ΔΔ did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from was purified from recombinant and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a of 7.7 U mg. FadH from also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (  = 330 mM,  = 9.6 U mg), 1-propanol (  = 150 mM,  = 5 U mg) and 1-butanol (  = 50 mM,  = 0.8 U mg). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.072413-0
2013-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2651.html?itemId=/content/journal/micro/10.1099/mic.0.072413-0&mimeType=html&fmt=ahah

References

  1. Ando M., Yoshimoto T., Ogushi S., Rikitake K., Shibata S., Tsuru D. ( 1979). Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties. J Biochem 85:1165–1172[PubMed]
    [Google Scholar]
  2. Anthony C. ( 1982). The Biochemistry of Methylotrophs London, New York: Academic Press;
    [Google Scholar]
  3. Arndt A., Eikmanns B. J. ( 2007). The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189:7408–7416 [View Article][PubMed]
    [Google Scholar]
  4. Arndt A., Auchter M., Ishige T., Wendisch V. F., Eikmanns B. J. ( 2008). Ethanol catabolism in Corynebacterium glutamicum. . J Mol Microbiol Biotechnol 15:222–233 [View Article][PubMed]
    [Google Scholar]
  5. Auchter M., Arndt A., Eikmanns B. J. ( 2009). Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140:84–91 [View Article][PubMed]
    [Google Scholar]
  6. Brautaset T., Jakobsen M Ø. M., Flickinger M. C., Valla S., Ellingsen T. E. ( 2004). Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. . J Bacteriol 186:1229–1238 [View Article][PubMed]
    [Google Scholar]
  7. Chang C. C., Gershwin M. E. ( 1992). Perspectives on formaldehyde toxicity: separating fact from fantasy. Regul Toxicol Pharmacol 16:150–160 [View Article][PubMed]
    [Google Scholar]
  8. Chistoserdova L., Gomelsky L., Vorholt J. A., Gomelsky M., Tsygankov Y. D., Lidstrom M. E. ( 2000). Analysis of two formaldehyde oxidation pathways in Methylobacillus flagellatus KT, a ribulose monophosphate cycle methylotroph. Microbiology 146:233–238[PubMed]
    [Google Scholar]
  9. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D. ( 1998). Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102 [View Article][PubMed]
    [Google Scholar]
  10. Eggeling L., Bott M. (editors) ( 2005). Handbook of Corynebacterium Glutamicum Boca Raton, USA: CRC Press; [View Article]
    [Google Scholar]
  11. Eggeling L., Sahm H. ( 1985). The formaldehyde dehydrogenase of Rhodococcus erythropolis, a trimeric enzyme requiring a cofactor and active with alcohols. Eur J Biochem 150:129–134 [View Article][PubMed]
    [Google Scholar]
  12. Eikmanns B. J. ( 2005). Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. Handbook on Corynebacterium Glutamicum241–276 Eggeling L., Bott M. Boca Raton, USA: CRC Press; [View Article]
    [Google Scholar]
  13. Fang Z., Roberts A. A., Weidman K., Sharma S. V., Claiborne A., Hamilton C. J., Dos Santos P. C. ( 2013). Cross-functionalities of Bacillus deacetylases involved in bacillithiol biosynthesis and bacillithiol-S-conjugate detoxification pathways. Biochem J 454:239–247[PubMed] [CrossRef]
    [Google Scholar]
  14. Feng J., Che Y., Milse J., Yin Y. J., Liu L., Rückert C., Shen X. H., Qi S. W., Kalinowski J., Liu S. J. ( 2006). The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. . J Biol Chem 281:10778–10785 [View Article][PubMed]
    [Google Scholar]
  15. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J. ( 2003). Acetate metabolism and its regulation in Corynebacterium glutamicum. . J Biotechnol 104:99–122 [View Article][PubMed]
    [Google Scholar]
  16. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A. III, Smith H. O. ( 2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345 [View Article][PubMed]
    [Google Scholar]
  17. Goenrich M., Bartoschek S., Hagemeier C. H., Griesinger C., Vorholt J. A. ( 2002). A glutathione-dependent formaldehyde-activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via two-dimensional proton exchange NMR spectroscopy. J Biol Chem 277:3069–3072 [View Article][PubMed]
    [Google Scholar]
  18. Gutheil W. G., Holmquist B., Vallee B. L. ( 1992). Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31:475–481 [View Article][PubMed]
    [Google Scholar]
  19. Gutheil W. G., Kasimoglu E., Nicholson P. C. ( 1997). Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. . Biochem Biophys Res Commun 238:693–696 [View Article][PubMed]
    [Google Scholar]
  20. Habibi A., Vahabzadeh F. ( 2013). Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:279–292 [View Article][PubMed]
    [Google Scholar]
  21. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  22. Hibi M., Sonoki T., Mori H. ( 2005). Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway. FEMS Microbiol Lett 253:237–242 [View Article][PubMed]
    [Google Scholar]
  23. Jakobsen O. M., Benichou A., Flickinger M. C., Valla S., Ellingsen T. E., Brautaset T. ( 2006). Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. . J Bacteriol 188:3063–3072 [View Article][PubMed]
    [Google Scholar]
  24. Jaureguibeitia A., Saá L., Llama M. J., Serra J. L. ( 2007). Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 73:1073–1086 [View Article][PubMed]
    [Google Scholar]
  25. Jensen J. V., Wendisch V. F. ( 2013). Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. . Microb Cell Fact 12:63 [View Article][PubMed]
    [Google Scholar]
  26. Jothivasan V. K., Hamilton C. J. ( 2008). Mycothiol: synthesis, biosynthesis and biological functions of the major low molecular weight thiol in actinomycetes. Nat Prod Rep 25:1091–1117 [View Article][PubMed]
    [Google Scholar]
  27. Kallen R. G., Jencks W. P. ( 1966). The mechanism of the condensation of formaldehyde with tetrahydrofolic acid. J Biol Chem 241:5851–5863[PubMed]
    [Google Scholar]
  28. Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H. ( 1982). Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201. Biochim Biophys Acta 715:143–150 [View Article][PubMed]
    [Google Scholar]
  29. Kato N., Yurimoto H., Thauer R. K. ( 2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem 70:10–21 [View Article][PubMed]
    [Google Scholar]
  30. Keilhauer C., Eggeling L., Sahm H. ( 1993). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603[PubMed]
    [Google Scholar]
  31. Kotrbova-Kozak A., Kotrba P., Inui M., Sajdok J., Yukawa H. ( 2007). Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol 76:1347–1356 [View Article][PubMed]
    [Google Scholar]
  32. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  33. Lagacé L., Gaudy R., Perez-Locas C., Sadiki M. ( 2012). Determination of naturally occurring formaldehyde levels in sap and wood tissue of maple trees using gas chromatography/mass spectrometry. J AOAC Int 95:394–398 [View Article][PubMed]
    [Google Scholar]
  34. Lee S. L., Wang M. F., Lee A. I., Yin S. J. ( 2003). The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett 544:143–147 [View Article][PubMed]
    [Google Scholar]
  35. Lindner S. N., Vidaurre D., Willbold S., Schoberth S. M., Wendisch V. F. ( 2007). NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. . Appl Environ Microbiol 73:5026–5033 [View Article][PubMed]
    [Google Scholar]
  36. Liu Y. B., Long M. X., Yin Y. J., Si M. R., Zhang L., Lu Z. Q., Wang Y., Shen X. H. ( 2013). Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. . Arch Microbiol 195:419–429 [View Article][PubMed]
    [Google Scholar]
  37. Lovschall H., Eiskjaer M., Arenholt-Bindslev D. ( 2002). Formaldehyde cytotoxicity in three human cell types assessed in three different assays. Toxicol In Vitro 16:63–69 [View Article][PubMed]
    [Google Scholar]
  38. Lüers G. H., Advani R., Wenzel T., Subramani S. ( 1998). The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast 14:759–771 [View Article][PubMed]
    [Google Scholar]
  39. Maden B. E. ( 2000). Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350:609–629 [View Article][PubMed]
    [Google Scholar]
  40. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. & other authors ( 2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:Database issueD225–D229 [View Article][PubMed]
    [Google Scholar]
  41. Martínez M. C., Achkor H., Persson B., Fernández M. R., Shafqat J., Farrés J., Jörnvall H., Parés X. ( 1996). Arabidopsis formaldehyde dehydrogenase. Molecular properties of plant class III alcohol dehydrogenase provide further insights into the origins, structure and function of plant class p and liver class I alcohol dehydrogenases. Eur J Biochem 241:849–857 [View Article][PubMed]
    [Google Scholar]
  42. Merkens H., Beckers G., Wirtz A., Burkovski A. ( 2005). Vanillate metabolism in Corynebacterium glutamicum. . Curr Microbiol 51:59–65 [View Article][PubMed]
    [Google Scholar]
  43. Misset-Smits M., van Ophem P. W., Sakuda S., Duine J. A. ( 1997). Mycothiol, 1-O-(2′-[N-acetyl-L-cysteinyl]amido-2′-deoxy-alpha-D-glucopyranosyl)-D- myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase. FEBS Lett 409:221–222 [View Article][PubMed]
    [Google Scholar]
  44. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K. ( 2005). Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266 [View Article][PubMed]
    [Google Scholar]
  45. Nash T. ( 1953). The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421[PubMed]
    [Google Scholar]
  46. Newton G. L., Arnold K., Price M. S., Sherrill C., Delcardayre S. B., Aharonowitz Y., Cohen G., Davies J., Fahey R. C., Davis C. ( 1996). Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178:1990–1995[PubMed]
    [Google Scholar]
  47. Newton G. L., Buchmeier N., Fahey R. C. ( 2008). Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria . Microbiol Mol Biol Rev 72:471–494 [View Article][PubMed]
    [Google Scholar]
  48. Newton G. L., Rawat M., La Clair J. J., Jothivasan V. K., Budiarto T., Hamilton C. J., Claiborne A., Helmann J. D., Fahey R. C. ( 2009). Bacillithiol is an antioxidant thiol produced in Bacilli . Nat Chem Biol 5:625–627 [View Article][PubMed]
    [Google Scholar]
  49. Nguyen T. T., Eiamphungporn W., Mäder U., Liebeke M., Lalk M., Hecker M., Helmann J. D., Antelmann H. ( 2009). Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR). Mol Microbiol 71:876–894 [View Article][PubMed]
    [Google Scholar]
  50. Norin A., Van Ophem P. W., Piersma S. R., Persson B., Duine J. A., Jörnvall H. ( 1997). Mycothiol-dependent formaldehyde dehydrogenase, a prokaryotic medium-chain dehydrogenase/reductase, phylogenetically links different eukaroytic alcohol dehydrogenases–primary structure, conformational modelling and functional correlations. Eur J Biochem 248:282–289 [View Article][PubMed]
    [Google Scholar]
  51. Pauling J., Röttger R., Tauch A., Azevedo V., Baumbach J. ( 2012). CoryneRegNet 6.0–Updated database content, new analysis methods and novel features focusing on community demands. Nucleic Acids Res 40:Database issueD610–D614 [View Article][PubMed]
    [Google Scholar]
  52. Peters E., Wittrock F., Großmann K., Frieß U., Richter A., Burrows J. P. ( 2012). Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations. Atmos Chem Phys 12:11179–11197 [View Article]
    [Google Scholar]
  53. Peters-Wendisch P. G., Wendisch V. F., de Graaf A. A., Eikmanns B. J., Sahm H. ( 1996). C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. . Arch Microbiol 165:387–396 [View Article][PubMed]
    [Google Scholar]
  54. Peters-Wendisch P. G., Schiel B., Wendisch V. F., Katsoulidis E., Möckel B., Sahm H., Eikmanns B. J. ( 2001). Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. . J Mol Microbiol Biotechnol 3:295–300[PubMed]
    [Google Scholar]
  55. Peters-Wendisch P., Stolz M., Etterich H., Kennerknecht N., Sahm H., Eggeling L. ( 2005). Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol 71:7139–7144 [View Article][PubMed]
    [Google Scholar]
  56. Pomper B. K., Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. ( 1999). A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261:475–480 [View Article][PubMed]
    [Google Scholar]
  57. Quayle J. R. ( 1980). Microbial assimilation of C1 compounds. The Thirteenth CIBA Medal Lecture. Biochem Soc Trans 8:1–10[PubMed]
    [Google Scholar]
  58. Sambrook J., Russell D. ( 2001). Molecular Cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratoy Press;
    [Google Scholar]
  59. Sanghani P. C., Bosron W. F., Hurley T. D. ( 2002). Human glutathione-dependent formaldehyde dehydrogenase. Structural changes associated with ternary complex formation. Biochemistry 41:15189–15194 [View Article][PubMed]
    [Google Scholar]
  60. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. ( 1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. . Gene 145:69–73 [View Article][PubMed]
    [Google Scholar]
  61. Schüte H., Flossdorf J., Sahm H., Kula M. R. ( 1976). Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. . Eur J Biochem 62:151–160 [View Article][PubMed]
    [Google Scholar]
  62. Shen X., Liu S. ( 2005). Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. . Sci China C Life Sci 48:241–249[PubMed]
    [Google Scholar]
  63. Siewe R. M., Weil B., Burkovski A., Eikmanns B. J., Eikmanns M., Krämer R. ( 1996). Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. . J Biol Chem 271:5398–5403 [View Article][PubMed]
    [Google Scholar]
  64. Simic P., Willuhn J., Sahm H., Eggeling L. ( 2002). Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. . Appl Environ Microbiol 68:3321–3327 [View Article][PubMed]
    [Google Scholar]
  65. Sindelar G., Wendisch V. F. ( 2007). Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689 [View Article][PubMed]
    [Google Scholar]
  66. Smejkalová H., Erb T. J., Fuchs G. ( 2010). Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS ONE 5: [View Article][PubMed]
    [Google Scholar]
  67. Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L., Wendisch V. F. ( 2005). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928 [View Article][PubMed]
    [Google Scholar]
  68. Steenkamp D. J., Vogt R. N. ( 2004). Preparation and utilization of a reagent for the isolation and purification of low-molecular-mass thiols. Anal Biochem 325:21–27 [View Article][PubMed]
    [Google Scholar]
  69. Stolz M., Peters-Wendisch P., Etterich H., Gerharz T., Faurie R., Sahm H., Fersterra H., Eggeling L. ( 2007). Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. . Appl Environ Microbiol 73:750–755 [View Article][PubMed]
    [Google Scholar]
  70. Stolzenberger J., Lindner S. N., Wendisch V. F. ( 2013a). The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159:1770–1781 [View Article][PubMed]
    [Google Scholar]
  71. Stolzenberger J., Lindner S. N., Persicke M., Brautaset T., Wendisch V. F. ( 2013b). Characterization of fructose 1,6‐bisphosphatase and sedoheptulose 1,7‐bisphosphatase from the facultative ribulose monophosphate cycle methylotroph. Bacillus methanolicus. J Bacteriol. 195:in press [View Article][PubMed]
    [Google Scholar]
  72. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. ( 1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89 [View Article][PubMed]
    [Google Scholar]
  73. Szende B., Tyihák E. ( 2010). Effect of formaldehyde on cell proliferation and death. Cell Biol Int 34:1273–1282 [View Article][PubMed]
    [Google Scholar]
  74. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  75. Tauch A., Kirchner O., Löffler B., Götker S., Pühler A., Kalinowski J. ( 2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367 [View Article][PubMed]
    [Google Scholar]
  76. Teng S., Beard K., Pourahmad J., Moridani M., Easson E., Poon R., O’Brien P. J. ( 2001). The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem Biol Interact 130-132:285–296 [View Article][PubMed]
    [Google Scholar]
  77. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  78. Tralau T., Lafite P., Levy C., Combe J. P., Scrutton N. S., Leys D. ( 2009). An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J Biol Chem 284:17826–17834 [View Article][PubMed]
    [Google Scholar]
  79. Tsuru D., Oda N., Matsuo Y., Ishikawa S., Ito K., Yoshimoto T. ( 1997). Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues. Biosci Biotechnol Biochem 61:1354–1357 [View Article][PubMed]
    [Google Scholar]
  80. Tyihák E., Albert L., Németh Z. I., Kátay G., Király-Véghely Z., Szende B. ( 1998). Formaldehyde cycle and the natural formaldehyde generators and capturers. Acta Biol Hung 49:225–238[PubMed]
    [Google Scholar]
  81. van Ophem P. W., Van Beeumen J., Duine J. A. ( 1992). NAD-linked, factor-dependent formaldehyde dehydrogenase or trimeric, zinc-containing, long-chain alcohol dehydrogenase from Amycolatopsis methanolica. . Eur J Biochem 206:511–518 [View Article][PubMed]
    [Google Scholar]
  82. Vogt R. N., Steenkamp D. J., Zheng R., Blanchard J. S. ( 2003). The metabolism of nitrosothiols in the Mycobacteria: identification and characterization of S-nitrosomycothiol reductase. Biochem J 374:657–666 [View Article][PubMed]
    [Google Scholar]
  83. Vorholt J. A. ( 2002). Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249 [View Article][PubMed]
    [Google Scholar]
  84. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. ( 2000). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650 [View Article][PubMed]
    [Google Scholar]
  85. Wendisch V. F. (editor) ( 2007). Amino Acid Biosynthesis – Pathways, Regulation and Metabolic EngineeringMicrobiology Monographs Heidelberg, Germany: Springer; [View Article]
    [Google Scholar]
  86. Witthoff S., Eggeling L., Bott M., Polen T. ( 2012). Corynebacterium glutamicum harbours a molybdenum cofactor-dependent formate dehydrogenase which alleviates growth inhibition in the presence of formate. Microbiology 158:2428–2439 [View Article][PubMed]
    [Google Scholar]
  87. Yang Z. N., Bosron W. F., Hurley T. D. ( 1997). Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J Mol Biol 265:330–343 [View Article][PubMed]
    [Google Scholar]
  88. Yasueda H., Kawahara Y., Sugimoto S. ( 1999). Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181:7154–7160[PubMed]
    [Google Scholar]
  89. Yurimoto H., Kato N., Sakai Y. ( 2005). Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chem Rec 5:367–375 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.072413-0
Loading
/content/journal/micro/10.1099/mic.0.072413-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error