1887

Abstract

Nonribosomal peptides contain a wide range of unusual non-proteinogenic amino acid residues. As a result, these complex natural products are amongst the most structurally diverse secondary metabolites in nature, and possess a broad spectrum of biological activities. -Hydroxylation of amino acid precursors or peptidyl residues and their subsequent processing by downstream tailoring enzymes are some of the most common themes in the biosynthetic diversification of these therapeutically important peptides. Identification and characterization of the biosynthetic intermediates and enzymes involved in these processes are thus pivotal in understanding nonribosomal peptide assembly and modification. To this end, the putative asparaginyl oxygenase- and 3-hydroxyasparaginyl phosphotransferase-encoding genes and were separately deleted from the calcium-dependent antibiotic (CDA) biosynthetic gene cluster of . Whilst the parent strains produce a number of 3-hydroxyasparagine- and 3-phosphohydroxyasparagine-containing CDAs, the Δ mutants produce exclusively non-phosphorylated CDAs. On the other hand, Δ mutants produce several new Asn-containing CDAs not present in the wild-type, which retain calcium-dependent antimicrobial activity. This confirms that AsnO and HasP are required for the -hydroxylation and phosphorylation of the Asn residue within CDA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002725-0
2007-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/768.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002725-0&mimeType=html&fmt=ahah

References

  1. Baldwin J. E., Lloyd M. D., Wha-Son B., Schofield C. J., Elson S. W., Baggaley K. H., Nicholson N. H. 1993; A substrate analogue study on clavaminic acid synthase: possible clues to the biosynthetic origin of proclavamic acid. J Chem Soc Chem Commun500–502
    [Google Scholar]
  2. Baltz R. H., Miao V., Wrigley S. K. 2005; Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741 [CrossRef]
    [Google Scholar]
  3. Bierman M., Logan R., O'Brien K., Seno E. T., Nagaraja Rao R., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  4. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  5. Bischoff D., Bister B., Bertazzo M., Pfeifer V., Stegmann E., Nicholson G. J., Keller S., Pelzer S., Wohlleben W., Sussmuth R. D. 2005; The biosynthesis of vancomycin-type glycopeptide antibiotics: a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. Chembiochem 6:267–272 [CrossRef]
    [Google Scholar]
  6. Challis G. L., Ravel J., Townsend C. A. 2000; Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224 [CrossRef]
    [Google Scholar]
  7. Chen H., Thomas M. G., O'Connor S. E., Hubbard B. K., Burkart M. D., Walsh C. T. 2001; Aminoacyl-S-enzyme intermediates in β -hydroxylation and α , β -desaturation of amino acids in peptide antibiotics. Biochemistry 40:11651–11659 [CrossRef]
    [Google Scholar]
  8. Chen H., Hubbard B. K., O'Connor S. E., Walsh C. T. 2002; Formation of β -hydroxyhistidine in the biosynthesis of nikkomycin antibiotics. Chem Biol 9:103–112 [CrossRef]
    [Google Scholar]
  9. Fukuda D. S., Du Bus R. H., Baker P. J., Berry D. M., Mynderse J. S. 1990; A54145, a new lipopeptide antibiotic complex: isolation and characterization. J Antibiot 43:594–600 [CrossRef]
    [Google Scholar]
  10. Haltli B., Tan Y., Magarvey N. A., Wagenaar M., Yin X., Greenstein M., Hucul J. A., Zabriskie T. M. 2005; Investigating β -hydroxyenduracididine formation in the biosynthesis of the mannopeptimycins. Chem Biol 12:1163–1168 [CrossRef]
    [Google Scholar]
  11. Hewitson K. S., McNeill L. A., Riordan M. V., Tian Y. M., Bullock A. N., Welford R. W., Elkins J. M., Oldham N. J., Bhattacharya S. other authors 2002; Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355 [CrossRef]
    [Google Scholar]
  12. Hindle Z., Smith C. P. 1994; Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated by the GlyR protein. Mol Microbiol 12:737–745 [CrossRef]
    [Google Scholar]
  13. Hojati Z., Milne C., Harvey B., Gordon L., Borg M., Flett F., Wilkinson B., Sidebottom P. J., Rudd B. A. M. other authors 2002; Structure, biosynthetic origin and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor . Chem Biol 9:1175–1187 [CrossRef]
    [Google Scholar]
  14. Hopwood D. A., Wright H. M. 1983; CDA is a new chromosomally-determined antibiotic from Streptomyces coelicolor A3(2. J Gen Microbiol 129:3575–3579
    [Google Scholar]
  15. Jia S., McGinnis K., VanDusen W. J., Burke C. J., Kuo A., Griffin P. R., Sardana M. K., Elliston K. O., Stern A. M., Friedman P. A. 1994; A fully active catalytic domain of bovine aspartyl (asparaginyl) β -hydroxylase expressed in Escherichia coli : characterization and evidence for the identification of an active-site region in vertebrate α -ketoglutarate-dependent dioxygenases. Proc Natl Acad Sci U S A 91:7227–7231 [CrossRef]
    [Google Scholar]
  16. Ju J., Ozanick S. G., Shen B., Thomas M. G. 2004; Conversion of (2 S )-arginine to (2 S ,3 R )-capreomycidine by VioC and VioD from the viomycin biosynthetic pathway of Streptomyces sp. strain ATCC11861. Chembiochem 5:1281–1285 [CrossRef]
    [Google Scholar]
  17. Kato T., Hinoo H., Terui Y., Kikuchi J., Shoji J. 1988; The structures of katanosins A and B. J Antibiot 41:719–725 [CrossRef]
    [Google Scholar]
  18. Kempter C., Kaiser D., Haag S., Nicholson G., Gnau V., Walk T., Gierling G. H., Decker H., Zahner H. other authors 1997; CDA: calcium-dependent peptide antibiotics from Streptomyces coelicolor A3(2) containing unusual residues. Angew Chem Int Ed Engl 36:498–501 [CrossRef]
    [Google Scholar]
  19. Khaleeli N., Busby R. W., Townsend C. A. 2000; Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase. The His-3 variant of the 2-His-1-carboxylate model. Biochemistry 39:8666–8673 [CrossRef]
    [Google Scholar]
  20. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  21. Lancaster D. E., McDonough M. A., Schofield C. J. 2004; Factor inhibiting hypoxia-inducible factor (FIH) and other asparaginyl hydroxylases. Biochem Soc Trans 32:943–945 [CrossRef]
    [Google Scholar]
  22. Lu W., Oberthur M., Leimkuhler C., Tao J., Kahne D., Walsh C. T. 2004; Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. Proc Natl Acad Sci U S A 101:4390–4395 [CrossRef]
    [Google Scholar]
  23. Lyutzkanova D., Distler J., Altenbuchner J. 1997; A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus . Microbiology 143:2135–2143 [CrossRef]
    [Google Scholar]
  24. McCafferty D. G., Cudic P., Frankel B. A., Barkallah S., Kruger R. G., Li W. 2002; Chemistry and biology of the ramoplanin family of peptide antibiotics. Peptide Science 66:261–284 [CrossRef]
    [Google Scholar]
  25. Miao V., Brian P., Brost R., Penn J., Whiting A., Martin S., Ford R., Parr I. other authors Coëffet-LeGal M.-F. 2005; Daptomycin biosynthesis in Streptomyces roseosporus : cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:1507–1523 [CrossRef]
    [Google Scholar]
  26. Miao V., Brost R., Chapple J., She K., Baltz R. H., Coëffet-Le Gal M.-F. 2006; The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae . J Ind Microbiol Biotechnol 33:66–74 [CrossRef]
    [Google Scholar]
  27. Milne C., Powell A., Jim J., Al Nakeeb M., Smith C. P., Micklefield J. 2006; Biosynthesis of the (2 S , 3 R )-3-methyl glutamate residue of nonribosomal lipopeptides. J Am Chem Soc 128:11250–11259 [CrossRef]
    [Google Scholar]
  28. Oh S. H., Chater K. F. 1997; Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 17:122–127
    [Google Scholar]
  29. Paget M. S., Hintermann G., Smith C. P. 1994; Construction and application of streptomycete promoter probe vectors which employ the Streptomyces glaucescens tyrosinase-encoding gene as a reporter. Gene 146:105–110 [CrossRef]
    [Google Scholar]
  30. Raja A., LaBonte J., Lebbos J., Kirkpatrick P. 2003; Daptomycin. Nat Rev Drug Discovery 2:943–944 [CrossRef]
    [Google Scholar]
  31. Salowe S. P., Marsh E. N., Townsend C. A. 1990; Purification and characterization of clavaminate synthase from Streptomyces clavuligerus : an unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29:6499–6508 [CrossRef]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 2000 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Stachelhaus T., Mootz H. D., Marahiel M. A. 1999; The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505 [CrossRef]
    [Google Scholar]
  34. Takano E., White J., Thompson C., Bibb M. J. 1995; Construction of thiostrepton-inducible, high-copy number expression vectors for Streptomyces spp. Gene 166:133–137 [CrossRef]
    [Google Scholar]
  35. Uguru G. C., Milne C., Borg M., Flett F., Smith C. P., Micklefield J. 2004; Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J Am Chem Soc 126:5032–5033 [CrossRef]
    [Google Scholar]
  36. Vértesy, L., Ehlers E., Kogler H., Kurz M., Meiwes J., Seibert G., Vogel M., Hammann P. 2000; Friulimicins: novel lipopetide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. J Antibiot 53:816–827 [CrossRef]
    [Google Scholar]
  37. Valcarce C., Stenflo J., Björk I. 1999; The epidermal growth factor precursor: a calcium-binding, β -hydroxyasparagine containing modular protein present on the surface of platelets. Eur J Biochem 260:200–207 [CrossRef]
    [Google Scholar]
  38. Walker S., Chen L., Hu Y., Rew Y., Shin D., Boger D. L. 2005; Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105:449–476 [CrossRef]
    [Google Scholar]
  39. Yin X., Zabriskie T. M. 2004; VioC is a non-heme iron, α -ketoglutarate-dependent oxygenase that catalyzes the formation of 3 S -hydroxy-l-arginine during viomycin biosynthesis. Chembiochem 5:1274–1277 [CrossRef]
    [Google Scholar]
  40. Zerbe K., Woithe K., Li D. B., Vitali F., Bigler L., Robinson J. A. 2004; An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. Angew Chem Int Ed Engl 43:6709–6713 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002725-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002725-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error