1887

Abstract

The gene (renamed ) of IL1403 was shown to encode a peptidoglycan -acetylglucosamine deacetylase. Inactivation of in led to fully acetylated peptidoglycan, whereas cloning of on a multicopy plasmid vector resulted in an increased degree of peptidoglycan deacetylation, as shown by analysis of peptidoglycan constituent muropeptides. An increased amount of -unsubstituted glucosamine residues in peptidoglycan resulted in a reduction of the rate of autolysis of cells. The activity of the major autolysin AcmA was tested on cells or peptidoglycan with different degrees of de--acetylation. Deacetylated peptidoglycan exhibited decreased susceptibility to AcmA hydrolysis. This reduced susceptibility to AcmA did not result from reduced AcmA binding to peptidoglycan with an increasing degree of de--acetylation. In conclusion, enzymic -acetylglucosamine deacetylation protects peptidoglycan from hydrolysis by the major autolysin AcmA in cells, and this leads to decreased cellular autolysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005835-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3275.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005835-0&mimeType=html&fmt=ahah

References

  1. Atrih A., Bacher G., Allmaier G., Williamson M. P., Foster S. J. 1999; Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181:3956–3966
    [Google Scholar]
  2. Blair D. E., Schuttelkopf A. W., MacRae J. I., van Aalten D. M. 2005; Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci U S A 102:15429–15434
    [Google Scholar]
  3. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P. other authors 2007; A critical role for peptidoglycan N -deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 104:997–1002
    [Google Scholar]
  4. Bosma T., Kanninga R., Neef J., Audouy S. A., van Roosmalen M. L., Steen A., Buist G., Kok J., Kuipers O. P. other authors 2006; Novel surface display system for proteins on non-genetically modified Gram-positive bacteria. Appl Environ Microbiol 72:880–889
    [Google Scholar]
  5. Buist G., Kok J., Leenhouts K. J., Dabrowska M., Venema G., Haandrikman A. J. 1995; Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis , a muramidase needed for cell separation. J Bacteriol 177:1554–1563
    [Google Scholar]
  6. Buist G., Venema G., Kok J. 1998; Autolysis of Lactococcus lactis is influenced by proteolysis. J Bacteriol 180:5947–5953
    [Google Scholar]
  7. Calamita H. G., Ehringer W. D., Koch A. L., Doyle R. J. 2001; Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci U S A 98:15260–15263
    [Google Scholar]
  8. Chaurand P., Luetzenkirchen F., Spengler B. 1999; Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10:91–103
    [Google Scholar]
  9. Chich J. F., Rigolet P., Nardi M., Gripon J. C., Ribadeau-Dumas B., Brunie S. 1995; Purification, crystallization, and preliminary X-ray analysis of PepX, an X-prolyl dipeptidyl aminopeptidase from Lactococcus lactis . Proteins 23:278–281
    [Google Scholar]
  10. Chopin A., Chopin M. C., Moillo-Batt A., Langella P. 1984; Two plasmid-determined restriction and modification systems in Streptococcus lactis . Plasmid 11:260–263
    [Google Scholar]
  11. Chopin A., Bolotin A., Sorokin A., Ehrlich S. D., Chopin M. 2001; Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res 29:644–651
    [Google Scholar]
  12. Cornett J. B., Shockman G. D. 1978; Cellular lysis of Streptococcus faecalis induced with Triton X-100. J Bacteriol 135:153–160
    [Google Scholar]
  13. Courtin P., Miranda G., Guillot A., Wessner F., Mezange C., Domakova E., Kulakauskas S., Chapot-Chartier M. P. 2006; Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188:5293–5298
    [Google Scholar]
  14. Coutinho P. M., Henrissat B. 1999; Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering, pp 3–12 Edited by Gilbert H. J., Davies G., Henrissat B., Svensson B. Cambridge: The Royal Society of Chemistry;
    [Google Scholar]
  15. Croux C., Canard B., Goma G., Soucaille P. 1992; Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non- N -acetylated peptidoglycan. Appl Environ Microbiol 58:1075–1081
    [Google Scholar]
  16. Delcour J., Ferain T., Deghorain M., Palumbo E., Hols P. 1999; The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184
    [Google Scholar]
  17. Grangette C., Muller-Alouf H., Hols P., Goudercourt D., Delcour J., Turneer M., Mercenier A. 2004; Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun 72:2731–2737
    [Google Scholar]
  18. Guedon E., Serror P., Ehrlich S. D., Renault P., Delorme C. 2001; Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis . Mol Microbiol 40:1227–1239
    [Google Scholar]
  19. Guillot A., Gitton C., Anglade P., Mistou M. Y. 2003; Proteomic analysis of Lactococcus lactis , a lactic acid bacterium. Proteomics 3:337–354
    [Google Scholar]
  20. Hayashi H., Araki Y., Ito E. 1973; Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme. J Bacteriol 113:592–598
    [Google Scholar]
  21. Holo H., Nes I. F. 1989; High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  22. Huard C., Miranda G., Wessner F., Bolotin A., Hansen J., Foster S. J., Chapot-Chartier M. P. 2003; Characterization of AcmB, an N -acetylglucosaminidase autolysin from Lactococcus lactis . Microbiology 149:695–705
    [Google Scholar]
  23. Huard C., Miranda G., Redko Y., Wessner F., Foster S. J., Chapot-Chartier M. P. 2004; Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis : identification of a third N -acetylglucosaminidase, AcmC. Appl Environ Microbiol 70:3493–3499
    [Google Scholar]
  24. Kawagishi S., Araki Y., Ito E. 1980; Bacillus cereus autolytic endoglucosaminidase active on cell wall peptidoglycan with N -unsubstituted glucosamine residues. J Bacteriol 141:137–143
    [Google Scholar]
  25. Kemper M. A., Urrutia M. M., Beveridge T. J., Koch A. L., Doyle R. J. 1993; Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis . J Bacteriol 175:5690–5696
    [Google Scholar]
  26. Lazarevic V., Margot P., Soldo B., Karamata D. 1992; Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N -acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961
    [Google Scholar]
  27. Lortal S., Chapot-Chartier M. P. 2005; Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15:857–871
    [Google Scholar]
  28. Nouaille S., Ribeiro L. A., Miyoshi A., Pontes D., Le Loir Y., Oliveira S. C., Langella P., Azevedo V. 2003; Heterologous protein production and delivery systems for Lactococcus lactis . Genet Mol Res 2:102–111
    [Google Scholar]
  29. Palumbo E., Deghorain M., Cocconcelli P. S., Kleerebezem M., Geyer A., Hartung T., Morath S., Hols P. 2006; d-Alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol 188:3709–3715
    [Google Scholar]
  30. Pfeffer J. M., Strating H., Weadge J. T., Clarke A. J. 2006; Peptidoglycan O - acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J Bacteriol 188:902–908
    [Google Scholar]
  31. Poquet I., Saint V., Seznec E., Simoes N., Bolotin A., Gruss A. 2000; HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051
    [Google Scholar]
  32. Psylinakis E., Boneca I. G., Mavromatis K., Deli A., Hayhurst E., Foster S. J., Varum K. M., Bouriotis V. 2005; Peptidoglycan N -acetylglucosamine deacetylases from Bacillus cereus , highly conserved proteins in Bacillus anthracis . J Biol Chem 280:30856–30863
    [Google Scholar]
  33. Renault P., Corthier G., Goupil N., Delorme C., Ehrlich S. D. 1996; Plasmid vectors for Gram-positive bacteria switching from high to low copy. number Gene 183175–182
  34. Redko Y., Courtin P., Mézange C., Huard C., Chapot-Chartier M.-P. 2007; Lactococcus lactis gene yjgB encodes a γ -d-glutaminyl-l-lysyl-endopeptidase which hydrolyzes petidoglycan. Appl Environ Microbiol 73 (in press
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  36. Shockman G. D. 1992; The autolytic (‘suicidase’) system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett 79:261–267
    [Google Scholar]
  37. Shockman G. D., Höltje J. V. 1994; Microbial peptidoglycan (murein) hydrolases. In Bacterial Cell Wall ( New Comprehensive Biochemistry ) , vol. 27 pp 131–167 Edited by Ghuysen J.-M, Hackenbeck R. Amsterdam, The Netherlands: Elsevier;
    [Google Scholar]
  38. Smith T. J., Blackman S. A., Foster S. J. 2000; Autolysins of Bacillus subtilis : multiple enzymes with multiple functions. Microbiology 146:249–262
    [Google Scholar]
  39. Steen A., Buist G., Leenhouts K. J., El Khattabi M., Grijpstra F., Zomer A. L., Venema G., Kuipers O. P., Kok J. 2003; Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881
    [Google Scholar]
  40. Steen A., Buist G., Horsburgh G. J., Venema G., Kuipers O. P., Foster S. J., Kok J. 2005a; AcmA of Lactococcus lactis is an N -acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J 272:2854–2868
    [Google Scholar]
  41. Steen A., Palumbo E., Deghorain M., Cocconcelli P. S., Delcour J., Kuipers O. P., Kok J., Buist G., Hols P. 2005b; Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. J Bacteriol 187:114–124
    [Google Scholar]
  42. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  43. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  44. Vollmer W., Tomasz A. 2000; The pgdA gene encodes for a peptidoglycan N -acetylglucosamine deacetylase in Streptococcus pneumoniae . J Biol Chem 275:20496–20501
    [Google Scholar]
  45. Wecke J., Madela K., Fischer W. 1997; The absence of d-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis . Microbiology 143:2953–2960
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005835-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005835-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error