1887

Abstract

The Gram-negative bacterium triggers pro-inflammatory apoptotic cell death in macrophages, which is crucial for the onset of an acute inflammatory diarrhoea termed bacillary dysentery. The Mxi-Spa type III secretion system promotes bacterial uptake and escape into the cytoplasm, where, dependent on the translocator/effector protein IpaB, caspase-1 [interleukin (IL)-1-converting enzyme] and its substrate IL-1 are activated. Here, we show that in the course of a macrophage infection, IpaB is secreted intracellularly for more than 1 h post-infection and progressively accumulates in aggregates on the bacterial surface. Concomitantly, the bacterial pool of IpaB is gradually depleted. The protonophore carbonyl cyanide -chlorophenylhydrazone (CCCP) dose-dependently inhibited the Mxi-Spa-dependent secretion of IpaB triggered by the dye Congo red and abolished translocation of IpaB into the host-cell cytoplasm of -infected macrophages. CCCP specifically inhibited -triggered macrophage death in a dose-dependent manner, even if added up to 60 min post-infection. Addition of CCCP 15 min after infection blocked macrophage cell death, the activation of caspase-1 and the maturation of IL-1, without affecting uptake or escape of from the phagosome. By contrast, CCCP used at the same concentration had no effect on ATP-induced caspase-1 activation or staurosporine-induced apoptosis. Our results indicate that under the conditions used, CCCP rapidly and specifically blocks bacterial type III secretion, and thus, intracellular type III secretion promotes cytotoxicity of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007427-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/2862.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007427-0&mimeType=html&fmt=ahah

References

  1. Allaoui A., Sansonetti P. J., Parsot C. 1993; MxiD: an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins. Mol Microbiol 7:59–68
    [Google Scholar]
  2. Bahrani F. K., Sansonetti P. J., Parsot C. 1997; Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect Immun 65:4005–4010
    [Google Scholar]
  3. Barzu S., Nato F., Rouyre S., Mazie J.-C., Sansonetti P. J., Phalipon A. 1993; Characterization of B-cell epitopes on IpaB, an invasion-associated antigen of Shigella flexneri: identification of an immunodominant domain recognized during natural infection. Infect Immun 61:3825–3831
    [Google Scholar]
  4. Blocker A., Gounon P., Larquet E., Niebuhr K., Cabiaux V., Parsot C., Sansonetti P. 1999; The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147:683–693
    [Google Scholar]
  5. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A. 2001; Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39:652–663
    [Google Scholar]
  6. Buchrieser C., Glaser P., Rusniok C., Nedjari H., D'Hauteville H., Kunst F., Sansonetti P., Parsot C. 2000; The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38:760–771
    [Google Scholar]
  7. Chen Y., Smith M. R., Thirumalai K., Zychlinsky A. 1996; A bacterial invasin induces macrophage apoptosis by directly binding ICE. EMBO J 15:3853–3860
    [Google Scholar]
  8. Cheneval D., Ramage P., Kastelic T., Szelestenyi T., Niggli H., Hemmig R., Bachmann M., MacKenzie A. 1998; Increased mature interleukin-1 β (IL-1 β) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1 β-converting enzyme processing. J Biol Chem 273:17846–17851
    [Google Scholar]
  9. Cornelis G. R. 2006; The type III secretion injectisome. Nat Rev Microbiol 4:811–825
    [Google Scholar]
  10. Cossart P., Sansonetti P. J. 2004; Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248
    [Google Scholar]
  11. De Geyter C., Vogt B., Benjelloun-Touimi Z., Sansonetti P. J., Ruysschaert J. M., Parsot C., Cabiaux V. 1997; Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Lett 400:149–154
    [Google Scholar]
  12. De Geyter C., Wattiez R., Sansonetti P., Falmagne P., Ruysschaert J. M., Parsot C., Cabiaux V. 2000; Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane. Eur J Biochem 267:5769–5776
    [Google Scholar]
  13. Enninga J., Mounier J., Sansonetti P., Tran Van Nhieu G. 2005; Secretion of type III effectors into host cells in real time. Nat Methods 2:959–965
    [Google Scholar]
  14. Espina M., Olive A. J., Kenjale R., Moore D. S., Ausar S. F., Kaminski R. W., Oaks E. V., Middaugh C. R., Picking W. D., Picking W. L. 2006; IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun 74:4391–4400
    [Google Scholar]
  15. Finlay B. B., Falkow S. 1988; Comparison of the invasion strategies used by Salmonella cholera-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70:1089–1099
    [Google Scholar]
  16. Galan J. E., Wolf-Watz H. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573
    [Google Scholar]
  17. Guichon A., Hersh D., Smith M. R., Zychlinsky A. 2001; Structure-function analysis of the Shigella virulence factor IpaB. J Bacteriol 183:1269–1276
    [Google Scholar]
  18. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  19. Haimovich B., Venkatesan M. M. 2006; Shigella and Salmonella: death as a means of survival. Microbes Infect 8:568–577
    [Google Scholar]
  20. Hayward R. D., Cain R. J., McGhie E. J., Phillips N., Garner M. J., Koronakis V. 2005; Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 56:590–603
    [Google Scholar]
  21. Hilbi H. 2006; Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell Microbiol 8:1697–1706
    [Google Scholar]
  22. Hilbi H., Chen Y., Thirumalai K., Zychlinsky A. 1997; The interleukin 1 β-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun 65:5165–5170
    [Google Scholar]
  23. Hilbi H., Moss J. E., Hersh D., Chen Y., Arondel J., Banerjee S., Flavell R. A., Yuan J., Sansonetti P. J., Zychlinsky A. 1998; Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900
    [Google Scholar]
  24. Hilbi H., Puro R. J., Zychlinsky A. 2000; Tripeptidyl peptidase II promotes maturation of caspase-1 in Shigella flexneri-induced macrophage apoptosis. Infect Immun 68:5502–5508
    [Google Scholar]
  25. Hogquist K. A., Nett M. A., Unanue E. R., Chaplin D. D. 1991; Interleukin-1 is processed and released during apoptosis. Proc Natl Acad Sci U S A 88:8485–8489
    [Google Scholar]
  26. Hume P. J., McGhie E. J., Hayward R. D., Koronakis V. 2003; The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol Microbiol 49:425–439
    [Google Scholar]
  27. Islam D., Veress B., Bardhan P. K., Lindberg A. A., Christensson B. 1997; In situ characterization of inflammatory responses in the rectal mucosae of patients with Shigellosis. Infect Immun 65:739–749
    [Google Scholar]
  28. Jacobsen M. D., Weil M., Raff M. C. 1996; Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J Cell Biol 133:1041–1051
    [Google Scholar]
  29. Koterski J. F., Nahvi M., Venkatesan M. M., Haimovich B. 2005; Virulent Shigella flexneri causes damage to mitochondria and triggers necrosis in infected human monocyte-derived macrophages. Infect Immun 73:504–513
    [Google Scholar]
  30. Kuwae A., Yoshida S., Tamano K., Mimuro H., Suzuki T., Sasakawa C. 2001; Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J Biol Chem 276:32230–32239
    [Google Scholar]
  31. Lafont F., Tran Van Nhieu G., Hanada K., Sansonetti P., van der Goot F. G. 2002; Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21:4449–4457
    [Google Scholar]
  32. Li P., Allen H., Banerjee S., Franklin S., Herzog L., Johnston C., McDowell J., Paskind M., Rodman L. other authors 1995; Mice deficient in IL-1 β-converting enzyme are defective in production of mature IL-1 β and resistant to endotoxic shock. Cell 80:401–411
    [Google Scholar]
  33. Linsinger G., Wilhelm S., Wagner H., Hacker G. 1999; Uncouplers of oxidative phosphorylation can enhance a Fas death signal. Mol Cell Biol 19:3299–3311
    [Google Scholar]
  34. Mariathasan S., Weiss D. S., Newton K., McBride J., O'Rourke K., Roose-Girma M., Lee W. P., Weinrauch Y., Monack D. M., Dixit V. M. 2006; Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232
    [Google Scholar]
  35. Matsuyama S., Llopis J., Deveraux Q. L., Tsien R. Y., Reed J. C. 2000; Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325
    [Google Scholar]
  36. Maurelli A. T., Baudry B., d'Hauteville H., Hale T. L., Sansonetti P. J. 1985; Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect Immun 49:164–171
    [Google Scholar]
  37. Ménard R., Sansonetti P. J., Parsot C. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906
    [Google Scholar]
  38. Ménard R., Sansonetti P., Parsot C. 1994a; The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13:5293–5302
    [Google Scholar]
  39. Ménard R., Sansonetti P. J., Parsot C., Vasselon T. 1994b; Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79:515–525
    [Google Scholar]
  40. Page A. L., Ohayon H., Sansonetti P. J., Parsot C. 1999; The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell Microbiol 1:183–193
    [Google Scholar]
  41. Parsot C., Ménard R., Gounon P., Sansonetti P. J. 1995; Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol 16:291–300
    [Google Scholar]
  42. Perregaux D., Gabel C. A. 1994; Interleukin-1 β maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203
    [Google Scholar]
  43. Rathman M., Jouirhi N., Allaoui A., Sansonetti P., Parsot C., Tran Van Nhieu G. 2000; The development of a FACS-based strategy for the isolation of Shigella flexneri mutants that are deficient in intercellular spread. Mol Microbiol 35:974–990
    [Google Scholar]
  44. Rosenberger C. M., Finlay B. B. 2003; Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 4:385–396
    [Google Scholar]
  45. Sansonetti P. J., Kopecko D. J., Formal S. B. 1982; Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35:852–860
    [Google Scholar]
  46. Sansonetti P. J., Phalipon A., Arondel J., Thirumalai K., Banerjee S., Akira S., Takeda K., Zychlinsky A. 2000; Caspase-1 activation of IL-1 β and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12:581–590
    [Google Scholar]
  47. Schlumberger M. C., Hardt W. D. 2006; Salmonella type III secretion effectors: pulling the host cell's strings. Curr Opin Microbiol 9:46–54
    [Google Scholar]
  48. Schlumberger M. C., Muller A. J., Ehrbar K., Winnen B., Duss I., Stecher B., Hardt W. D. 2005; Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci U S A 102:12548–12553
    [Google Scholar]
  49. Schroeder G. N., Hilbi H. 2006; Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella. Cell Microbiol 9:265–278
    [Google Scholar]
  50. Schuch R., Sandlin R. C., Maurelli A. T. 1999; A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol Microbiol 34:675–689
    [Google Scholar]
  51. Skoudy A., Mounier J., Aruffo A., Ohayon H., Gounon P., Sansonetti P., Tran Van Nhieu G. 2000; CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol 2:19–33
    [Google Scholar]
  52. Stecher B., Hapfelmeier S., Muller C., Kremer M., Stallmach T., Hardt W. D. 2004; Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72:4138–4150
    [Google Scholar]
  53. Suzuki T., Nakanishi K., Tsutsui H., Iwai H., Akira S., Inohara N., Chamaillard M., Nunez G., Sasakawa C. 2005; A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 280:14042–14050
    [Google Scholar]
  54. Tamano K., Aizawa S., Katayama E., Nonaka T., Imajoh-Ohmi S., Kuwae A., Nagai S., Sasakawa C. 2000; Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J 19:3876–3887
    [Google Scholar]
  55. Thirumalai K., Kim K., Zychlinsky A. 1997; IpaB, a Shigella flexneri invasin, colocalizes with interleukin-1 β converting enzyme (ICE) in the cytoplasm of macrophages. Infect Immun 65:787–793
    [Google Scholar]
  56. Tran Van Nhieu G., Caron E., Hall A., Sansonetti P. J. 1999; IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18:3249–3262
    [Google Scholar]
  57. van der Goot F. G., Tran van Nhieu G., Allaoui A., Sansonetti P., Lafont F. 2004; Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 279:47792–47798
    [Google Scholar]
  58. Walev I., Reske K., Palmer M., Valeva A., Bhakdi S. 1995; Potassium-inhibited processing of IL-1 β in human monocytes. EMBO J 14:1607–1614
    [Google Scholar]
  59. Watarai M., Tobe T., Yoshikawa M., Sasakawa C. 1995; Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J 14:2461–2470
    [Google Scholar]
  60. Wilharm G., Lehmann V., Krauss K., Lehnert B., Richter S., Ruckdeschel K., Heesemann J., Trulzsch K. 2004; Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009
    [Google Scholar]
  61. Zychlinsky A., Prévost M. C., Sansonetti P. J. 1992; Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–168
    [Google Scholar]
  62. Zychlinsky A., Fitting C., Cavaillon J. M., Sansonetti P. J. 1994a; Interleukin-1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94:1328–1332
    [Google Scholar]
  63. Zychlinsky A., Kenny B., Ménard R., Prévost M. C., Holland I. B., Sansonetti P. J. 1994b; IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol 11:619–627
    [Google Scholar]
  64. Zychlinsky A., Thirumalai K., Arondel J., Cantey J. R., Aliprantis A., Sansonetti P. J. 1996; In vivo apoptosis in Shigella flexneri infections. Infect Immun 64:5357–5365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007427-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007427-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error