1887

Abstract

The genome of the pathovar () strain 8004 encodes three uncharacterized proteins, XC1166, XC1223 and XC1976, annotated as glucose kinase (Glk) by bioinformatic studies. Here we have investigated the biochemical characteristics and physiological roles of these proteins with particular reference to the synthesis of extracellular polysaccharide (EPS). XC1166, XC1223 and XC1976 were overexpressed as fusion proteins with a His affinity tag and purified by nickel affinity chromatography. The standard Glk activity assay revealed that all three proteins possessed apparent Glk activity, with XC1976-His being the most active; the specific activity values were 1.16×10 U mg for XC1166-His, 4.36×10 U mg for XC1223-His and 2.63×10 U mg for XC1976-His. TLC analysis showed, however, that only XC1976-His could phosphorylate glucose. Insertional mutants of , and were generated using the suicide plasmid pK18. Although mutant strains with insertions in or had Glk activity similar to that of the wild-type strain, the mutant had only about 6 % of the wild-type activity. Mutation in had complex effects on EPS production. In media containing arabinose, glucose, galactose, sucrose or maltose, the mutant produced about 40–75 % of the wild-type level of EPS, whereas in medium containing fructose, the mutant showed a 30 % increase in EPS production compared to the wild-type strain. The mutant also showed attenuated virulence on the host plant Chinese radish (). The results indicate that XC1976 has the most significant role for the parameters tested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010538-0
2007-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4284.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010538-0&mimeType=html&fmt=ahah

References

  1. Alvarez A. M. 2000; Black rot of crucifers. In Mechanisms of Resistance to Plant Diseases pp 21–52 Edited by Slusarenko A. J., Fraser R. S. S., van Loon L. C. Dordrecht: Kluwer Academic Publications;
    [Google Scholar]
  2. Angell S., Lewis C. G., Bibb M. J. 1992; The glucokinase gene of Streptomyces coelicolor A3(2): its nucleotide sequence, transcriptional analysis and role in glucose repression. Mol Microbiol 6:2833–2844
    [Google Scholar]
  3. Angell S., Lewis C. G., Buttner M. J., Bibb M. J. 1994; Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol Gen Genet 244:135–143
    [Google Scholar]
  4. Banerjee P. C., Darzins A., Maitra P. K. 1987; Gluconogenic mutations in Pseudomonas aeruginosa : genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase. J Gen Microbiol 133:1099–1107
    [Google Scholar]
  5. Blanvillain S., Meyer D., Boulanger A., Lautier M., Guynet C., Denance N., Vasse J., Lauber E., Arlat M. 2007; Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224
    [Google Scholar]
  6. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  7. Brückner R., Titgemeyer F. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148
    [Google Scholar]
  8. Catanzano F., Gambuti A., Graziano G., Barone G. 1997; Interaction with d-glucose and thermal denaturation of yeast hexokinase B: a DSC study. J Biochem ( Tokyo ) 121:568–577
    [Google Scholar]
  9. Conway T. 1992; The Entner–Doudoroff pathway: history, physiology, and molecular biology. FEMS Microbiol Rev 9:1–27
    [Google Scholar]
  10. da Silva A. C., Ferro J. A., Reinach F. C., Farah C. S., Furlan L. R., Quaggio R. B., Monteiro-Vitorello C. B., Van Sluys M. A., Almeida N. F. other authors 2002; Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463
    [Google Scholar]
  11. Daniels M. J., Barber C. E., Turner P. C., Cleary W. G., Sawczyc M. K. 1984a; Isolation of mutants of Xanthomonas campestris pathovar campestris showing altered pathogenicity. J Gen Microbiol 130:2447–2455
    [Google Scholar]
  12. Daniels M. J., Barber C. E., Turner P. C., Sawczyc M. K., Byrde R. J., Fielding A. H. 1984b; Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323–3328
    [Google Scholar]
  13. de Crécy-Lagard V., Bouvet O. M., Lejeune P., Danchin A. 1991a; Fructose catabolism in Xanthomonas campestris pv. campestris : sequence of the PTS operon, characterization of the fructose-specific enzymes. J Biol Chem 266:18154–18161
    [Google Scholar]
  14. de Crécy-Lagard V., Lejeune P., Bouvet O. M., Danchin A. 1991b; Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris . Mol Gen Genet 227:465–472
    [Google Scholar]
  15. de Crécy-Lagard V., Binet M., Danchin A. 1995; Fructose phosphotransferase system of Xanthomonas campestris pv. campestris : characterization of the fruB gene. Microbiology 141:2253–2260
    [Google Scholar]
  16. Dow J. M., Daniels M. J. 1994; Pathogenicity determinants and global regulation of pathogenicity in Xanthomonas campestris pv. campestris . In Molecular and Cellular Mechanisms in Bacterial Pathogenesis of Plants and Animals pp 29–41 Edited by Dangl J. L. Berlin: Springer;
    [Google Scholar]
  17. Dow J. M., Crossman L., Findlay K., He Y.-Q., Feng J.-X., Tang J.-L. 2003; Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000
    [Google Scholar]
  18. Duine J. A., Jongejan J. A. 1989; Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Annu Rev Biochem 58:403–426
    [Google Scholar]
  19. García-Ochoa F., Santos V. E., Casas J. A., Gómez E. 2000; Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579
    [Google Scholar]
  20. Geerse R. H., Izzo F., Postma P. W. 1989; The PEP : fructose phosphotransferase system in Salmonella typhimurium : FPr combines enzyme IIIFru and pseudo-HPr activities. Mol Gen Genet 216:517–525
    [Google Scholar]
  21. Gonzali S., Pistelli L., De Bellis L., Alpi A. 2001; Characterization of two Arabidopsis thaliana fructokinases. Plant Sci 160:1107–1114
    [Google Scholar]
  22. Huynh T. V., Dahlbeck D., Staskawicz B. J. 1989; Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377
    [Google Scholar]
  23. Kennedy J. F., Bradshaw I. J. 1984; Production, properties and applications of xanthan. Prog Ind Microbiol 19:319–371
    [Google Scholar]
  24. Kim H. S., Park H. J., Heu S., Jung J. 2004; Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines . J Bacteriol 186:411–418
    [Google Scholar]
  25. Kwakman J. H., Postma P. W. 1994; Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor . J Bacteriol 176:2694–2698
    [Google Scholar]
  26. Leong S. A., Ditta G. S., Helinski D. R. 1982; Heme biosynthesis in Rhizobium : identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti . J Biol Chem 257:8724–8730
    [Google Scholar]
  27. Lessie T. G., Phibbs P. V. 1984; Alternative pathways of carbohydrate utilization in Pseudomonas . Annu Rev Microbiol 38:359–387
    [Google Scholar]
  28. Letisse F., Chevallereau P., Simon J. L., Lindley N. D. 2001; Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol 55:417–422
    [Google Scholar]
  29. Letisse F., Chevallereau P., Simon J. L., Lindley N. 2002; The influence of metabolic network structures and energy requirements on xanthan gum yields. J Biotechnol 99:307–317
    [Google Scholar]
  30. Lu G.-T., Ma Z.-F., Hu J.-R., Tang D.-J., He Y.-Q., Feng J.-X., Tang J.-L. 2007; A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris . Microbiology 153:737–746
    [Google Scholar]
  31. Meyer D., Schneider-Fresenius C., Horlacher R., Peist R., Boos W. 1997; Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179:1298–1306
    [Google Scholar]
  32. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Moore B., Zhou Z., Rolland F., Hell O., Cheng W. H., Liu Y. X., Hwang I., Jones T., Sheen J. 2003; Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science 300:332–336
    [Google Scholar]
  34. Onsando J. M. 1992; Black rot of crucifers. In Plant Diseases of International Importance II: Diseases of Vegetable and Oil Seed Crops pp 243–252 Edited by Chaube H. S., Kumar J., Mukhopadhyay A. N., Singh U. S. Englewood Cliffs, NJ: Prentice Hall;
    [Google Scholar]
  35. Prior T. I., Kornberg H. L. 1988; Nucleotide sequence of fruA , the gene specifying enzyme IIfru of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Escherichia coli K12. J Gen Microbiol 134:2757–2768
    [Google Scholar]
  36. Qian W., Jia Y., Ren S.-X., He Y.-Q., Feng J.-X., Lu L.-F., Sun Q., Ying G., Tang D.-J. other authors 2005; Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris . Genome Res 15:757–767
    [Google Scholar]
  37. Reid S. J., Abratt V. R. 2005; Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol 67:312–321
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  40. Soby S. D., Daniels M. J. 1996; Catabolite-repressor-like protein regulates the expression of a gene under the control of the Escherichia coli lac promoter in the plant pathogen Xanthomonas campestris pv. campestris . Appl Microbiol Biotechnol 46:559–561
    [Google Scholar]
  41. Spath C., Kraus A., Hillen W. 1997; Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium . J Bacteriol 179:7603–7605
    [Google Scholar]
  42. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol 169:5789–5794
    [Google Scholar]
  43. Swings J. G., Civerolo E. L. 1993 Xanthomonas London: Chapman & Hall;
  44. Tang J.-L., Liu Y.-N., Barber C. E., Dow J. M., Wootton J. C., Daniels M. J. 1991; Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris . Mol Gen Genet 226:409–417
    [Google Scholar]
  45. Tang D. J., He Y. Q., Feng J. X., He B. R., Jiang B. L., Lu G. T., Chen B., Tang J. L. 2005; Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. J Bacteriol 187:6231–6237
    [Google Scholar]
  46. Temple L. M., Sage A. E., Schweizer H. P., Phibbs P. V. 1998; Carbohydrate catabolism in Pseudomonas aeruginosa . In Pseudomonas pp 35–72 Edited by Montie T. C. New York & London: Plenum Press;
    [Google Scholar]
  47. Titgemeyer F., Reizer J., Reizer A., Saier M. H. Jr 1994; Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354
    [Google Scholar]
  48. Turner P., Barber C., Daniels M. J. 1984; Behavior of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris . Mol Gen Genet 195:101–107
    [Google Scholar]
  49. Wagner E., Marcandier S., Egeter O., Deutscher J., Götz F., Brückner R. 1995; Glucose kinase-dependent catabolite repression in Staphylococcus xylosus . J Bacteriol 177:6144–6152
    [Google Scholar]
  50. Whitfield C., Sutherland I. W., Cripps R. E. 1982; Glucose metabolism in Xanthomonas campestris . J Gen Microbiol 128:981–985
    [Google Scholar]
  51. Wilson J. E. 2003; Isoenzymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057
    [Google Scholar]
  52. Windgassen M., Urban A., Jaeger K. E. 2000; Rapid gene inactivation in Pseudomonas aeruginosa . FEMS Microbiol Lett 193:201–205
    [Google Scholar]
  53. Wu L. F., Tomich J. M., Saier M. H. Jr 1990; Structure and evolution of a multidomain multiphosphoryl transfer protein: nucleotide sequence of the fruB (HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213:687–703
    [Google Scholar]
  54. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  55. Yun M. H., Torres P. S., El Oirdi M., Rigano L. A., Gonzalez-Lamothe R., Marano M. R., Castagnaro A. P., Dankert M. A., Bouarab K., Vojnov A. A. 2006; Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141:178–187
    [Google Scholar]
  56. Zagallo A. C., Wang C. H. 1967; Comparative glucose catabolism of Xanthomonas species. J Bacteriol 93:970–975
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010538-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010538-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error