1887

Abstract

is one of the most prevalent bloom-forming cyanobacteria and has been the cause of increasing public health concern due to the production of hepatotoxins (microcystins). To investigate the genetic diversity, clonality and evolutionary genetic background with regard to the toxicity of , a multilocus sequence typing (MLST) scheme was developed, based on seven selected housekeeping loci (, , , , , and ). Analysis of a collection of 164 isolates from Japan and other countries identified 79 unique sequence types (STs), revealing a high level of genetic diversity (=0.951). Although recombination between loci was indicated to be substantial by Shimodaira–Hasegawa (SH) tests, multilocus linkage disequilibrium analyses indicated that recombination between strains probably occurs at some frequency but not to the extent at which alleles are associated randomly, suggesting that the population structure of is clonal. Analysis of subsets of strains also indicated that the clonal population structure is maintained even in a local population. Phylogenetic analysis based on the concatenated sequences of seven MLST loci demonstrated that microcystin-producing genotypes are not monophyletic, providing further evidence for the gain and loss of toxicity during the intraspecific diversification of . However, toxic strains are genetically distinct from non-toxic strains in MLST allelic profiles, and it was also shown that non-toxic strains harbouring toxin genes fall into a single monophyletic clade, except for one case. These results suggest that the toxicity of is relatively stable in the short term, and therefore can be unequivocally characterized by MLST. The MLST scheme established here will be of great help for future detailed population genetic studies of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010645-0
2007-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3695.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010645-0&mimeType=html&fmt=ahah

References

  1. Agapow P.-M., Burt A. 2001; Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102
    [Google Scholar]
  2. Atwood K. C., Schneider L. K., Ryan F. J. 1951; Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A 37:146–155
    [Google Scholar]
  3. Barker G. L., Handley B. A., Vacharapiyasophon P., Stevens J. R., Hayes P. K. 2000; Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (cyanobacteria) filaments in the Baltic Sea. Microbiology 146:2865–2875
    [Google Scholar]
  4. Christiansen G., Kurmayer R., Liu Q., Borner T. 2006; Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72:117–123
    [Google Scholar]
  5. Cohan F. M. 2002; What are bacterial species?. Annu Rev Microbiol 56:457–487
    [Google Scholar]
  6. Dittmann E., Wiegand C. 2006; Cyanobacterial toxins – occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17
    [Google Scholar]
  7. Dittmann E., Neilan B. A., Erhard M., von Dohren H., Borner T. 1997; Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787
    [Google Scholar]
  8. Enright M. C., Spratt B. G. 1998; A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144:3049–3060
    [Google Scholar]
  9. Feil E. J., Enright M. C. 2004; Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol 7:308–313
    [Google Scholar]
  10. Hanage W. P., Fraser C., Spratt B. G. 2005; Fuzzy species among recombinogenic bacteria. BMC Biol 3:6
    [Google Scholar]
  11. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994; Group 11. Oxygenic phototrophic bacteria. In Bergey's Manual of Determinative Bacteriology, 9th edn. pp 377–425 Edited by Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. Homan W. L., Tribe D., Poznanski S., Li M., Hogg G., Spalburg E., Van Embden J. D., Willems R. J. 2002; Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971
    [Google Scholar]
  13. Istock C. A., Duncan K. E., Ferguson N., Zhou X. 1992; Sexuality in a natural population of bacteria – Bacillus subtilis challenges the clonal paradigm. Mol Ecol 1:95–103
    [Google Scholar]
  14. Janse I., Kardinaal W. E., Meima M., Fastner J., Visser P. M., Zwart G. 2004; Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987
    [Google Scholar]
  15. Kasai F., Kawachi M., Erata M., Watanabe M. M. 2004 NIES-Collection, List of Strains, Microalgae and Protozoa, 7th edn. Tsukuba, Japan: National Institute for Environmental Studies;
  16. Kurmayer R., Dittmann E., Fastner J., Chorus I. 2002; Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118
    [Google Scholar]
  17. Lyra C., Suomalainen S., Gugger M., Vezie C., Sundman P., Paulin L., Sivonen K. 2001; Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526
    [Google Scholar]
  18. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145
    [Google Scholar]
  19. Martin D. P., Williamson C., Posada D. 2005; RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262
    [Google Scholar]
  20. Mikalsen B., Boison G., Skulberg O. M., Fastner J., Davies W., Gabrielsen T. M., Rudi K., Jakobsen K. S. 2003; Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785
    [Google Scholar]
  21. Mlouka A., Comte K., Castets A. M., Bouchier C., Tandeau de Marsac N. 2004; The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 186:2355–2365
    [Google Scholar]
  22. Nei M. 1987 Molecular Evolutionary Genetics New York: Columbia University Press;
  23. Neilan B. A. 1995; Identification and phylogenetic analysis of toxigenic Cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl Environ Microbiol 61:2286–2291
    [Google Scholar]
  24. Neilan B. A., Jacobs D., Goodman A. E. 1995; Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883
    [Google Scholar]
  25. Neilan B. A., Jacobs D., Del Dot T., Blackall L. L., Hawkins P. R., Cox P. T., Goodman A. E. 1997; rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697
    [Google Scholar]
  26. Nishizawa T., Asayama M., Fujii K., Harada K., Shirai M. 1999; Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem (Tokyo ) 126:520–529
    [Google Scholar]
  27. Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M. 1999; Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21
    [Google Scholar]
  28. Otsuka S., Suda S., Li R., Matsumoto S., Watanabe M. M. 2000; Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50
    [Google Scholar]
  29. Otsuka S., Suda S., Shibata S., Oyaizu H., Matsumoto S., Watanabe M. M. 2001; A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int J Syst Evol Microbiol 51:873–879
    [Google Scholar]
  30. Papke R. T., Koenig J. E., Rodriguez-Valera F., Doolittle W. F. 2004; Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929
    [Google Scholar]
  31. Posada D., Crandall K. A. 1998; MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818
    [Google Scholar]
  32. Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Vaitomaa J., Borner T., Sivonen K. 2004; Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573
    [Google Scholar]
  33. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574
    [Google Scholar]
  34. Rozas J., Sanchez-DelBarrio J. C., Messeguer X., Rozas R. 2003; DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497
    [Google Scholar]
  35. Selander R. K., Levin B. R. 1980; Genetic diversity and structure in Escherichia coli populations. Science 210:545–547
    [Google Scholar]
  36. Shimodaira H., Hasegawa M. 1999; Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116
    [Google Scholar]
  37. Smith J. M., Smith N. H., O'Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A 90:4384–4388
    [Google Scholar]
  38. Swofford D. L. 2002 paup* – Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  39. Tajima F. 1989; Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
    [Google Scholar]
  40. Takahashi I., Hayano D., Asayama M., Masahiro F., Watahiki M., Shirai M. 1996; Restriction barrier composed of an extracellular nuclease and restriction endonuclease in the unicellular cyanobacterium Microcystis sp. FEMS Microbiol Lett 145:107–111
    [Google Scholar]
  41. Tanabe Y., Kaya K., Watanabe M. M. 2004; Evidence for recombination in the microcystin synthetase ( mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58:633–641
    [Google Scholar]
  42. Tillett D., Dittmann E., Erhard M., von Dohren H., Borner T., Neilan B. A. 2000; Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764
    [Google Scholar]
  43. Tillett D., Parker D. L., Neilan B. A. 2001; Detection of toxigenicity by a probe for the microcystin synthetase A gene ( mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818
    [Google Scholar]
  44. Tucker S., Pollard P. 2005; Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635
    [Google Scholar]
  45. Wallace M. M., Miller D. W., Raps S. 2002; Characterization of pMa025, a plasmid from the cyanobacterium Microcystis aeruginosa UV025. Arch Microbiol 177:332–338
    [Google Scholar]
  46. Watanabe M. 1996; Isolation, cultivation, and classification of bloom-forming Microcystis in Japan. In Toxic Microcystis pp 13–34 Edited by Watanabe M. F., Harada K., Carmichael W. W., Fukui H. Boca Raton, FL: CRC press;
    [Google Scholar]
  47. Yoshida T., Takashima Y., Tomaru Y., Shirai Y., Takao Y., Hiroishi S., Nagasaki K. 2006; Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:1239–1247
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010645-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010645-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error