1887

Abstract

Precise regulation of the number and placement of flagella is critical for the mono-polar-flagellated bacterium to swim efficiently. We have shown previously that the number of polar flagella is positively regulated by FlhF and negatively regulated by FlhG. We now show that Δ cells are non-flagellated as are most Δ cells; however, some of the Δ cells have several flagella at lateral positions. We found that FlhF–GFP was localized at the flagellated pole, and its polar localization was seen more intensely in Δ cells. On the other hand, most of the FlhG–GFP was diffused throughout the cytoplasm, although some was localized at the pole. To investigate the FlhF–FlhG interaction, immunoprecipitation was performed by using an anti-FlhF antibody, and FlhG co-precipitated with FlhF. From these results we propose a model in which FlhF localization at the pole determines polar location and production of a flagellum, FlhG interacts with FlhF to prevent FlhF from localizing at the pole, and thus FlhG negatively regulates flagellar number in cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012641-0
2008-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1390.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012641-0&mimeType=html&fmt=ahah

References

  1. Brun Y. V., Marczynski G., Shapiro L. 1994; The expression of asymmetry during Caulobacter cell differentiation. Annu Rev Biochem 63:419–450
    [Google Scholar]
  2. Correa N. E., Peng F., Klose K. E. 2005; Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 187:6324–6332
    [Google Scholar]
  3. Dasgupta N., Ramphal R. 2001; Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa . J Bacteriol 183:6636–6644
    [Google Scholar]
  4. Dasgupta N., Arora S. K., Ramphal R. 2000; fleN , a gene that regulates flagellar number in Pseudomonas aeruginosa . J Bacteriol 182:357–364
    [Google Scholar]
  5. Dasgupta N., Ferrell E. P., Kanack K. J., West S. E., Ramphal R. 2002; fleQ , the gene encoding the major flagellar regulator of Pseudomonas aeruginosa , is σ 70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250
    [Google Scholar]
  6. Dasgupta N., Wolfgang M. C., Goodman A. L., Arora S. K., Jyot J., Lory S., Ramphal R. 2003; A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa . Mol Microbiol 50:809–824
    [Google Scholar]
  7. Fukuoka H., Yakushi T., Kusumoto A., Homma M. 2005; Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J Mol Biol 351:707–717
    [Google Scholar]
  8. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  9. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  10. Harwood C. S., Fosnaugh K., Dispensa M. 1989; Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 171:4063–4066
    [Google Scholar]
  11. Kawagishi I., Okunishi I., Homma M., Imae Y. 1994; Removal of the periplasmic DNase before electroporation enhances efficiency of transformation in a marine bacterium Vibrio alginolyticus . Microbiology 140:2355–2361
    [Google Scholar]
  12. Kawagishi I., Nakada M., Nishioka N., Homma M. 1997; Cloning of a Vibrio alginolyticus rpoN gene that is required for polar flagellar formation. J Bacteriol 179:6851–6854
    [Google Scholar]
  13. Kearns D. B., Losick R. 2003; Swarming motility in undomesticated Bacillus subtilis . Mol Microbiol 49:581–590
    [Google Scholar]
  14. Kubori T., Shimamoto N., Yamaguchi S., Namba K., Aizawa S. 1992; Morphological pathway of flagellar assembly in Salmonella typhimurium . J Mol Biol 226:433–446
    [Google Scholar]
  15. Kubori T., Yamaguchi S., Aizawa S. 1997; Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J Bacteriol 179:813–817
    [Google Scholar]
  16. Kusumoto A., Kamisaka K., Yakushi T., Terashima H., Shinohara A., Homma M. 2006; Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus . J Biochem 139:113–121
    [Google Scholar]
  17. Macnab R. 1996; Flagella and motility. In Escherichia coli and Salmonella pp 123–145 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Macnab R. M. 2004; Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694:207–217
    [Google Scholar]
  19. McCarter L. L. 2001; Polar flagellar motility of the Vibrionaceae . Microbiol Mol Biol Rev 65:445–462
    [Google Scholar]
  20. Millikan D. S., Ruby E. G. 2004; Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J Bacteriol 186:4315–4325
    [Google Scholar]
  21. Murray T. S., Kazmierczak B. I. 2006; FlhF is required for swimming and swarming in Pseudomonas aeruginosa . J Bacteriol 188:6995–7004
    [Google Scholar]
  22. Nambu T., Kutsukake K. 2000; The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology 146:1171–1178
    [Google Scholar]
  23. Niehus E., Gressmann H., Ye F., Schlapbach R., Dehio M., Dehio C., Stack A., Meyer T. F., Suerbaum S., Josenhans C. 2004; Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori . Mol Microbiol 52:947–961
    [Google Scholar]
  24. Nishioka N., Furuno M., Kawagishi I., Homma M. 1998; Flagellin-containing membrane vesicles excreted from Vibrio alginolyticus mutants lacking a polar-flagellar filament. J Biochem 123:1169–1173
    [Google Scholar]
  25. Okunishi I., Kawagishi I., Homma M. 1996; Cloning and characterization of motY , a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus . J Bacteriol 178:2409–2415
    [Google Scholar]
  26. Pandza S., Baetens M., Park C. H., Au T., Keyhan M., Matin A. 2000; The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida . Mol Microbiol 36:414–423
    [Google Scholar]
  27. Prouty M. G., Correa N. E., Klose K. E. 2001; The novel σ 54- and σ 28-dependent flagellar gene transcription hierarchy of Vibrio cholerae . Mol Microbiol 39:1595–1609
    [Google Scholar]
  28. Rothfield L., Taghbalout A., Shih Y. L. 2005; Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959–968
    [Google Scholar]
  29. Shan S. O., Walter P. 2005; Co-translational protein targeting by the signal recognition particle. FEBS Lett 579:921–926
    [Google Scholar]
  30. Shapiro L., McAdams H. H., Losick R. 2002; Generating and exploiting polarity in bacteria. Science 298:1942–1946
    [Google Scholar]
  31. Studier F. W. 1991; Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44
    [Google Scholar]
  32. Terashima H., Fukuoka H., Yakushi T., Kojima S., Homma M. 2006; The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180
    [Google Scholar]
  33. Tsuda M., Iino T. 1983; Transductional analysis of the flagellar genes in Pseudomonas aeruginosa . J Bacteriol 153:1018–1026
    [Google Scholar]
  34. Wu J., Newton A. 1997; Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol 24:233–239
    [Google Scholar]
  35. Xu M., Yamamoto K., Honda T., Ming X. 1994; Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene ( trh . J Bacteriol 176:4757–4760
    [Google Scholar]
  36. Yagasaki J., Okabe M., Kurebayashi R., Yakushi T., Homma M. 2006; Roles of the intramolecular disulfide bridge in MotX and MotY, the specific proteins for sodium-driven motors in Vibrio spp. J Bacteriol 188:5308–5314
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012641-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012641-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error