1887

Abstract

The tetracycline (TET) promoter has been used in several systems as an inducible regulator of gene expression. In control analyses, the standard laboratory strain SC5314 was found to have altered susceptibility to a variety of antifungal drugs in the presence of relatively high concentrations (50–200 μg ml) of TET. Altered susceptibility was most notable with exposure to amphotericin B (AMB), with a 32-fold increase in susceptibility, and terbinafine (TRB), with a 32-fold decrease in susceptibility. The TET/AMB synergy was observed in several clinical isolates of and in the distantly related species and . The TET/AMB synergy is not related to efflux pump activity, as determined by FACS analyses and by analysis of a strain containing efflux pump deletions. Gene expression analyses by luciferase and by quantitative real-time reverse transcriptase PCR failed to identify significant alterations in expression of any genes associated with resistance. grown with TET for 48 h does show a reduction in total cellular ergosterol. Analysis of growth curves suggests that the TET effect is associated with lack of a diauxic shift, which is related to a loss of mitochondrial function. MitoTracker fluorescent dye was used to demonstrate that TET has a direct effect on mitochondrial function. These results demonstrate the need for careful analysis of TET effects when using a TET-inducible promoter, especially in studies that involve antifungal drugs. This study defines some limits to the use of the TET-inducible promoter, and identifies effects on cells that are the result of TET exposure alone, not the result of expression of a targeted gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013805-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/960.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013805-0&mimeType=html&fmt=ahah

References

  1. Alarco A. M., Marcil A., Chen J., Suter B., Thomas D., Whiteway M. 2004; Immune-deficient Drosophila melanogaster : a model for the innate immune response to human fungal pathogens. J Immunol 172:5622–5628
    [Google Scholar]
  2. Arnaud M. B., Costanzo M. C., Skrzypek M. S., Binkley G., Lane C., Miyasato S. R., Sherlock G. 2005; The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res 33:D358–D363
    [Google Scholar]
  3. Arthington Skaggs B. A., Jradi H., Desai T., Morrison C. J. 1999; Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans . J Clin Microbiol 37:3332–3337
    [Google Scholar]
  4. Bouchara J. P., Zouhair R., Le Boudouil S., Renier G., Filmon R., Chabasse D., Hallet J. N., Defontaine A. 2000; In-vivo selection of an azole-resistant petite mutant of Candida glabrata . J Med Microbiol 49:977–984
    [Google Scholar]
  5. Brun S., Berges T., Poupard P., Vauzelle-Moreau C., Renier G., Chabasse D., Bouchara J. P. 2004; Mechanisms of azole resistance in petite mutants of Candida glabrata . Antimicrob Agents Chemother 48:1788–1796
    [Google Scholar]
  6. Cheng S., Clancy C. J., Nguyen K. T., Clapp W., Nguyen M. H. 2007; A Candida albicans petite mutant strain with uncoupled oxidative phosphorylation overexpresses MDR1 and has diminished susceptibility to fluconazole and voriconazole. Antimicrob Agents Chemother 51:1855–1858
    [Google Scholar]
  7. Chopra I., Roberts M. 2001; Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260
    [Google Scholar]
  8. Clark F. S., Parkinson T., Hitchcock C. A., Gow N. A. R. 1996; Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species – possible role for drug efflux in drug resistance. Antimicrob Agents Chemother 40:419–425
    [Google Scholar]
  9. Defontaine A., Bouchara J. P., Declerk P., Planchenault C., Chabasse D., Hallet J. N. 1999; In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata . J Med Microbiol 48:663–670
    [Google Scholar]
  10. Espinel-Ingroff A., Kish C. Jr, Kerkering T. M., Fromtling R. A., Bartizal K., Galgiani J. N., Villareal K., Pfaller M. A., Gerarden T. other authors 1992; Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests. J Clin Microbiol 30:3138–3145
    [Google Scholar]
  11. Evans E. G., Odds F. C., Richardson M. D., Holland K. T. 1974; The effect of growth medium of filament production in Candida albicans . Sabouraudia 12:112–119
    [Google Scholar]
  12. Faryar K., Gatz C. 1992; Construction of a tetracycline-inducible promoter in Schizosaccharomyces pombe . Curr Genet 21:345–349
    [Google Scholar]
  13. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  14. Franzot S. P., Salkin I. F., Casadevall A. 1999; Cryptococcus neoformans var. grubii : separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol 37:838–840
    [Google Scholar]
  15. Graybill J. R., Mitchell L. 1980; Treatment of murine cryptococcosis with minocycline and amphotericin B. Sabouraudia 18:137–144
    [Google Scholar]
  16. Harry J. B., Oliver B. G., Song J. L., Silver P. M., Little J. T., Choiniere J., White T. C. 2005; Drug-induced regulation of the MDR1 promoter in Candida albicans . Antimicrob Agents Chemother 49:2785–2792
    [Google Scholar]
  17. Hughes A. L., Lee C. Y., Bien C. M., Espenshade P. J. 2007; 4-Methyl sterols regulate fission yeast SREBP-Scap under low oxygen and cell stress. J Biol Chem 282:24388–24396
    [Google Scholar]
  18. Kaur R., Castano I., Cormack B. P. 2004; Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata : roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613
    [Google Scholar]
  19. Kontoyiannis D. P. 2000; Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae . J Antimicrob Chemother 46:191–197
    [Google Scholar]
  20. Kwan C. N., Medoff G., Kobayashi G. S., Schlessinger D., Raskas H. J. 1972; Potentiation of the antifungal effects of antibiotics by amphotericin B. Antimicrob Agents Chemother 2:61–65
    [Google Scholar]
  21. Maesaki S., Marichal P., Vanden Bossche H., Sanglard D., Kohno S. 1999; Rhodamine 6G efflux for the detection of CDR1 -overexpressing azole-resistant Candida albicans strains. J Antimicrob Chemother 44:27–31
    [Google Scholar]
  22. Marr K. A., White T. C., van Burik J. A. H., Bowden R. A. 1997; Development of fluconazole resistance in Candida albicans causing disseminated infection in a patient undergoing marrow transplantation. Clin Infect Dis 25:908–910
    [Google Scholar]
  23. Mukherjee P. K., Chandra J., Kuhn D. A., Ghannoum M. A. 2003; Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340
    [Google Scholar]
  24. Nakayama H., Izuta M., Nagahashi S., Sihta E. Y., Sato Y., Yamazaki T., Arisawa M., Kitada K. 1998; A controllable gene-expression system for the pathogenic fungus Candida glabrata . Microbiology 144:2407–2415
    [Google Scholar]
  25. NCCLS 2002 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A2 , 2nd edn. Wayne, PA: Clinical Laboratory Standards Institute;
    [Google Scholar]
  26. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438:1151–1156
    [Google Scholar]
  27. Odds F. C., Abbott A. B., Pye G., Troke P. F. 1986; Improved method for estimation of azole antifungal inhibitory concentrations against Candida species, based on azole/antibiotic interactions. J Med Vet Mycol 24:305–311
    [Google Scholar]
  28. Ortiz D., Johnson P. J. 2003; Tetracycline-inducible gene expression in Trichomonas vaginalis . Mol Biochem Parasitol 128:43–49
    [Google Scholar]
  29. Park Y. N., Morschhauser J. 2005; Tetracycline-inducible gene expression and gene deletion in Candida albicans . Eukaryot Cell 4:1328–1342
    [Google Scholar]
  30. Pfaller M. A., Messer S. A., Bolmstrom A., Odds F. C., Rex J. H. 1996; Multisite reproducibility of the Etest MIC method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol 34:1691–1693
    [Google Scholar]
  31. Polevoda B., Panciera Y., Brown S. P., Wei J., Sherman F. 2006; Phenotypes of yeast mutants lacking the mitochondrial protein Pet20p. Yeast 23:127–139
    [Google Scholar]
  32. Raab W., Hogl F. 1980; Interactions between amphotericin B and hydroxytetracycline. Z Hautkr 55:1162–1171
    [Google Scholar]
  33. Rubin A., Whitcomb M., Russell M., Amod N. D. 1983; Tetracycline and amphotericin B vaginal cream for mixed vaginal infections. S Afr Med J 63:395–397
    [Google Scholar]
  34. Sanglard D., Ischer F., Bille J. 2001; Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata . Antimicrob Agents Chemother 45:1174–1183
    [Google Scholar]
  35. Saville S. P., Lazzell A. L., Monteagudo C., Lopez Ribot J. L. 2003; Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060
    [Google Scholar]
  36. Schafer-Korting M., Korting H. C., Rittler W., Obermuller W. 1995; Influence of serum protein binding on the in vitro activity of anti-fungal agents. Infection 23:292–297
    [Google Scholar]
  37. Siau H., Kerridge D. 1998; The effect of antifungal drugs in combination on the growth of Candida glabrata in solid and liquid media. J Antimicrob Chemother 41:357–366
    [Google Scholar]
  38. Silver P. M., Oliver B. G., White T. C. 2004; Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3:1391–1397
    [Google Scholar]
  39. Song J. L., Harry J. B., Eastman R. T., Oliver B. G., White T. C. 2004; The Candida albicans lanosterol 14-alpha-demethylase ( ERG11 ) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 48:1136–1144
    [Google Scholar]
  40. Sun C. H., Su L. H., Gillin F. D. 2005; Influence of 5′ sequences on expression of the Tet repressor in Giardia lamblia . Mol Biochem Parasitol 142:1–11
    [Google Scholar]
  41. Vogt K., Bhabhra R., Rhodes J. C., Askew D. S. 2005; Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus . BMC Microbiol 5:1
    [Google Scholar]
  42. White T. C. 1997; Antifungal drug resistance in Candida albicans . ASM News 63:427–433
    [Google Scholar]
  43. White T. C., Pfaller M. A., Rinaldi R. G., Smith J., Redding S. W. 1997; Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. Oral Dis 3:S102–S109
    [Google Scholar]
  44. White T. C., Marr K. A., Bowden R. A. 1998; Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402
    [Google Scholar]
  45. Wirtz E., Clayton C. 1995; Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268:1179–1183
    [Google Scholar]
  46. Yan S., Myler P. J., Stuart K. 2001; Tetracycline regulated gene expression in Leishmania donovani . Mol Biochem Parasitol 112:61–69
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013805-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013805-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error