1887

Abstract

Elloramycin is an anthracycline-like antitumour drug produced by Tü2353. Cosmid cos16F4 has been previously shown to direct the biosynthesis of the elloramycin aglycon 8-demethyltetracenomycin C (8-DMTC), but not elloramycin. Sequencing of the 24.2 kb insert in cos16F4 shows the presence of 17 genes involved in elloramycin biosynthesis ( genes) together with another additional eight ORFs probably not involved in elloramycin biosynthesis. The 17 genes would code for the biosynthesis of the polyketide moiety, sugar transfer, methylation of the tetracyclic ring and the sugar moiety, and export. Four genes (, , and ) encoding the enzymic activities required for the biosynthesis of the sugar -rhamnose were also identified in the chromosome. The involvement of this rhamnose gene cluster in elloramycin biosynthesis was demonstrated by insertional inactivation of the gene, generating a non-producer mutant that accumulates the 8-DMTC C aglycon. Coexpression of cos16F4 with pEM4RO (expressing the four rhamnose biosynthesis genes) in led to the formation of elloramycin, demonstrating that both subclusters are required for elloramycin biosynthesis. These results demonstrate that, in contrast to most of the biosynthesis gene clusters from actinomycetes, genes involved in the biosynthesis of elloramycin are located in two chromosomal loci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014035-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/781.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014035-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Bibb M. J., Biro S., Motamedi H., Collins J. F., Hutchinson C. R. 1989; Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8:2727–2736
    [Google Scholar]
  3. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  4. Blanco G., Patallo E. P., Braña A. F., Trefzer A., Bechthold A., Rohr J., Méndez C., Salas J. A. 2001; Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus , the producer of the antitumor polyketide elloramycin. Chem Biol 8:253–263
    [Google Scholar]
  5. Decker H., Motamedi H., Hutchinson C. R. 1993; Nucleotide sequences and heterologous expression of tcmG and tcmP , biosynthetic genes for tetracenomycin C in Streptomyces glaucescens . J Bacteriol 175:3876–3886
    [Google Scholar]
  6. Decker H., Rohr J., Motamedi H., Zahner H., Hutchinson C. R. 1995; Identification of Streptomyces olivaceus Tü2353 genes involved in the production of the polyketide elloramycin. Gene 166:121–126
    [Google Scholar]
  7. Decker H., Gaisser S., Pelzer S., Schneider P., Westrich L., Wohlleben W., Bechthold A. 1996; A general approach for cloning and characterizing dNDP-glucose dehydratase genes from actinomycetes. FEMS Microbiol Lett 141:195–201
    [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  9. Drautz H., Reuschenbach P., Zähner H., Rohr J., Zeeck A. 1985; Metabolic products of microorganisms. 225. Elloramycin, a new anthracycline-like antibiotic from Streptomyces olivaceus . Isolation, characterization, structure and biological properties. J Antibiot (Tokyo 38:1291–1301
    [Google Scholar]
  10. Fernández E., Weissbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A. 1998; Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937
    [Google Scholar]
  11. Fernández Lozano M. J., Remsing L. L., Quirós L. M., Brana A. F., Fernández E., Sánchez C., Méndez C., Rohr J., Salas J. A. 2000; Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus . J Biol Chem 275:3065–3074
    [Google Scholar]
  12. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229
    [Google Scholar]
  13. Gullón S., Olano C., Abdelfattah M. S., Brana A. F., Rohr J., Méndez C., Salas J. A. 2006; Isolation, characterization, and heterologous expression of the biosynthesis gene cluster for the antitumor anthracycline steffimycin. Appl Environ Microbiol 72:4172–4183
    [Google Scholar]
  14. Kieser T., Bibb M. J., Buttner M. B., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: The John Innes Foundation;
    [Google Scholar]
  15. Liu H. W., Thorson J. S. 1994; Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu Rev Microbiol 48:223–256
    [Google Scholar]
  16. Luzhetskyy A., Mayer A., Hoffmann J., Pelzer S., Holzenkämper M., Schmitt B., Wohlert S. E., Vente A., Bechthold A. 2007; Cloning and heterologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase. ChemBioChem 8:599–602
    [Google Scholar]
  17. Madduri K., Waldron C., Merlo D. J. 2001; Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa . J Bacteriol 183:5632–5638
    [Google Scholar]
  18. Méndez C., Salas J. A. 2001; Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19:449–456
    [Google Scholar]
  19. Patallo E. P., Blanco G., Fischer C., Braña A. F., Rohr J., Méndez C., Salas J. A. 2001; Deoxysugar methylation during biosynthesis of the antitumor polyketide elloramycin by Streptomyces olivaceus . Characterization of three methyltransferase genes. J Biol Chem 276:18765–18774
    [Google Scholar]
  20. Piepersberg W. 1994; Pathway engineering in secondary metabolite-producing actinomycetes. Crit Rev Biotechnol 14:251–285
    [Google Scholar]
  21. Quirós L. M., Aguirrezabalaga I., Olano C., Méndez C., Salas J. A. 1998; Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus . Mol Microbiol 28:1177–1185
    [Google Scholar]
  22. Rafanan E. R. Jr, Le L., Zhao L., Decker H., Shen B. 2001; Cloning, sequencing, and heterologous expression of the elmGHIJ genes involved in the biosynthesis of the polyketide antibiotic elloramycin from Streptomyces olivaceus Tü2353. J Nat Prod 64:444–449
    [Google Scholar]
  23. Rodríguez L., Oelkers C., Aguirrezabalaga I., Braña A. F., Rohr J., Méndez C., Salas J. A. 2000; Generation of hybrid elloramycin analogs by combinatorial biosynthesis using genes from anthracycline-type and macrolide biosynthetic pathways. J Mol Microbiol Biotechnol 2:271–276
    [Google Scholar]
  24. Salas J. A., Méndez C. 2005; Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J Mol Microbiol Biotechnol 9:77–85
    [Google Scholar]
  25. Salas J. A., Méndez C. 2007; Engineering the glycosylation of natural products. Trends Microbiol 15:219–232
    [Google Scholar]
  26. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbour, NY: Cold Spring Harbour Laboratory;
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  28. Shen B., Hutchinson C. R. 1994; Triple hydroxylation of tetracenomycin A2 to tetracenomycin C in Streptomyces glaucescens . Overexpression of the tcmG gene in Streptomyces lividans and characterization of the tetracenomycin A2 oxygenase. J Biol Chem 269:30726–30733
    [Google Scholar]
  29. Summers R. G., Wendt-Pienkowski E., Motamedi H., Hutchinson C. R. 1992; Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase- O -methyl transferase. J Bacteriol 174:1810–1820
    [Google Scholar]
  30. Trefzer A., Salas J. A., Bechthold A. 1999; Genes and enzymes of deoxysugar biosyntheses. Nat Prod Rep 16:283–299
    [Google Scholar]
  31. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194
    [Google Scholar]
  32. Waldron C., Matsushima P., Rosteck P. R. Jr, Broughton M. C., Turner J., Madduri K., Crawford K. P., Merlo D. J., Baltz R. H. 2001; Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa . Chem Biol 8:487–499
    [Google Scholar]
  33. Weymouth-Wilson A. C. 1997; The role of carbohydrates in biologically active natural products. Nat Prod Rep 14:99–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014035-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014035-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error