1887

Abstract

is a beneficial legume symbiont, closely related to species, which are chronic mammalian pathogens. We discovered that the MsbA2 protein is essential to ensure the symbiotic interaction with the host plant, alfalfa. invades plant cells via plant-derived structures known as infection threads. However, in the absence of MsbA2, remains trapped within abnormally thickened infection threads and induces a heightened plant defence response, characterized by a substantial thickening of the nodule endodermis layer and the accumulation of polyphenolic compounds. The MsbA2 protein is homologous to the lipopolysaccharide/phospholipid trafficking protein MsbA. However, MsbA2 was not essential for the membrane transport of either lipopolysaccharide or phospholipids in . We determined that the gene is transcribed in free-living and that in the absence of MsbA2 the polysaccharide content of is altered. Consequently, we propose a model whereby the altered polysaccharide content of the mutant could be responsible for its symbiotic defect by inducing an inappropriate host response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014894-0
2008-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1258.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014894-0&mimeType=html&fmt=ahah

References

  1. Arellano-Reynoso B., Lapaque N., Salcedo S., Briones G., Ciocchini A. E., Ugalde R., Moreno E., Moriyon I., Gorvel J. P. 2005; Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat Immunol 6:618–625
    [Google Scholar]
  2. Becker A., Küster H., Niehaus K., Pühler A. 1995; Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet 249:487–497
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
    [Google Scholar]
  4. Charles T. C., Finan T. M. 1991; Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5–20
    [Google Scholar]
  5. Davis B. W., Walker G. C. 2007; Disruption of sitA compromises Sinorhizobium meliloti for manganese uptake required for protection against oxidative stress. J Bacteriol 189:2101–2109
    [Google Scholar]
  6. Dickstein R., Bisseling T., Reinhold V. N., Ausubel F. M. 1988; Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev 2:677–687
    [Google Scholar]
  7. Doerrler W. T. 2006; Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol Microbiol 60:542–552
    [Google Scholar]
  8. Doerrler W. T., Reedy M. C., Raetz C. R. 2001; An Escherichia coli mutant defective in lipid export. J Biol Chem 276:11461–11464
    [Google Scholar]
  9. Doerrler W. T., Gibbons H. S., Raetz C. R. 2004; MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109
    [Google Scholar]
  10. Ferguson G. P., Roop R. M. II, Walker G. C. 2002; Deficiency of Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of cell envelope. J Bacteriol 184:5625–5632
    [Google Scholar]
  11. Ferguson G. P., Datta A., Baumgartner J., Roop R. M. II, Carlson R. W., Walker G. C. 2004; Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci U S A 101:5012–5017
    [Google Scholar]
  12. Ferguson G. P., Datta A., Carlson R. W., Walker G. C. 2005; Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol 56:68–80
    [Google Scholar]
  13. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  14. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorhölter F. J., Hernandez-Lucas I., Becker A., Cowie A. other authors 2001; The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci U S A 98:9889–9894
    [Google Scholar]
  15. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672
    [Google Scholar]
  16. Glazebrook J., Ichige A., Walker G. C. 1993; A Rhizobium melioti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev 7:1485–1497
    [Google Scholar]
  17. Gudlavalleti S. K., Forsberg L. S. 2003; Structural characterization of the lipid A component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide. Demonstration that the distal amide-linked acyloxyacyl residue containing the long chain fatty acid is conserved in Rhizobium and Sinorhizobium sp. J Biol Chem 278:3957–3968
    [Google Scholar]
  18. Keating D. H., Willits M. G., Long S. R. 2002; A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol 184:6681–6689
    [Google Scholar]
  19. Krusell L., Krause K., Ott T., Desbrosses G., Krämer U., Sato S., Nakamura Y., Tabata S., James E. K. other authors 2005; The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17:1625–1636
    [Google Scholar]
  20. Leigh J. A., Signer E. R., Walker G. C. 1985; Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 82:6231–6235
    [Google Scholar]
  21. LeVier K., Phillips R. W., Grippe V. K., Roop R. M. II, Walker G. C. 2000; Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493
    [Google Scholar]
  22. Long S., Reed J. W., Himawan J., Walker G. C. 1988; Genetic analysis of a cluster of genes required for synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti. J Bacteriol 170:4239–4248
    [Google Scholar]
  23. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122
    [Google Scholar]
  24. Mellor R. B. 1989; Bacteroids in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment: implications for other microbial endosymbioses. J Exp Bot 40:831–839
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Newman J. R., Fuqua C. 1999; Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203
    [Google Scholar]
  27. Niehaus K., Kapp D., Pühler A. 1993; Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti. Planta 190:415–425
    [Google Scholar]
  28. Niehaus K., Lagares A., Pühler A. 1998; A Sinorhizobium meliloti lipopolysaccharide mutant induces effective nodules on the host plant Medicago sativa (alfalfa) but fails to establish a symbiosis with Medicago truncatula. Mol Plant Microbe Interact 11:906–914
    [Google Scholar]
  29. Niner B. M., Hirsch A. M. 1998; How many Rhizobium genes, in addition to nod, nif/ fix, and exo, are needed for nodule development and function?. Symbiosis 24:51–102
    [Google Scholar]
  30. Nishijima M., Raetz C. R. 1979; Membrane lipid biogenesis in Escherichia coli: identification of genetic loci for phosphatidylglycerophosphate synthetase and construction of mutants lacking phosphatidylglycerol. J Biol Chem 254:7837–7844
    [Google Scholar]
  31. Osborn M. J., Munson R. 1974; Separation of the inner (cytoplasmic) and outer membranes of Gram-negative bacteria. Methods Enzymol 31:642–653
    [Google Scholar]
  32. Parent M. A., Goenka R., Murphy E., Levier K., Carreiro N., Golding B., Ferguson G., Roop R. M. II, Walker G. C., Baldwin C. L. 2007; Brucella abortus bacA mutant induces greater pro-inflammatory cytokines than the wild-type parent strain. Microbes Infect 9:55–62
    [Google Scholar]
  33. Paulsen I. T., Seshadri R., Nelson K. E., Eisen J. A., Heidelberg J. F., Read T. D., Dodson R. J., Umayam L., Brinkac L. M. other authors 2002; The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci U S A 99:13148–13153
    [Google Scholar]
  34. Pellock B. J., Cheng H. P., Walker G. C. 2000; Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318
    [Google Scholar]
  35. Pellock B. J., Teplitski M., Boinay R. P., Bauer W. D., Walker G. C. 2001; A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067–5076
    [Google Scholar]
  36. Perotto S., Brewin N. J., Kannenberg E. L. 1994; Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol Plant Microbe Interact 7:99–112
    [Google Scholar]
  37. Reuhs B. L., Kim J. S., Badgett A., Carlson R. W. 1994; Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact 7:240–247
    [Google Scholar]
  38. Ridley B. L., Jeyaretnam B. S., Carlson R. W. 2000; The type and yield of lipopolysaccharide from symbiotically deficient Rhizobium lipopolysaccharide mutants vary depending upon the extraction method. Glycobiology 10:1013–1023
    [Google Scholar]
  39. Roset M. S., Ciocchini A. E., Ugalde R. A., Inon de Iannino N. 2004; Molecular cloning and characterization of cgt, the Brucella abortus cyclic β-1,2-glucan transporter gene, and its role in virulence. Infect Immun 72:2263–2271
    [Google Scholar]
  40. Rosinha G. M., Freitas D. A., Miyoshi A., Azevedo V., Campos E., Cravero S. L., Rossetti O., Splitter G., Oliveira S. C. 2002; Identification and characterization of a Brucella abortus ATP-binding cassette transporter homolog to Rhizobium meliloti ExsA and its role in virulence and protection in mice. Infect Immun 70:5036–5044
    [Google Scholar]
  41. Ruiz N., Kahne D., Silhavy T. J. 2006; Advances in understanding bacterial outer membrane biogenesis. Nat Rev Microbiol 4:57–66
    [Google Scholar]
  42. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1982 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  44. Sharypova L. A., Niehaus K., Scheidle H., Holst O., Becker A. 2003; Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem 278:12946–12954
    [Google Scholar]
  45. Stanfield S. W., Ielpi L., O'Brochta D., Helinski D. R., Ditta G. S. 1988; The ndvA gene product of Rhizobium meliloti is required for β(1,2)glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol 170:3523–3530
    [Google Scholar]
  46. Tamura K., Dudley J., Nei M., Kumar S. 2007; MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
    [Google Scholar]
  47. Tefsen B., Bos M. P., Beckers F., Tommassen J., de Cock H. 2005; MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280:35961–35966
    [Google Scholar]
  48. Vasse J., De Billy F., Trunchet G. 1993; Abortion of infection during the Rhizobium meliloti-alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J 4:555–566
    [Google Scholar]
  49. Veereshlingam H., Haynes J. G., Penmetsa R. V., Cook D. R., Sherrier D. J., Dickstein R. 2004; nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Plant Physiol 136:3692–3702
    [Google Scholar]
  50. Zhou Z., White K. A., Polissi A., Georgopoulos C., Raetz C. R. 1998; Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273:12466–12475
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014894-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014894-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error