1887

Abstract

The activity of NifA, the transcriptional activator of the nitrogen fixation () gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL–NifA regulatory systems in and , in NifA is activated by a direct protein–protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019406-0
2008-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2689.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019406-0&mimeType=html&fmt=ahah

References

  1. Adler S. P., Purich D., Stadtman E. R. 1975; Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem 250:6264–6272
    [Google Scholar]
  2. Araújo L. M., Monteiro R. A., Souza E. M., Steffens M. B., Rigo L. U., Pedrosa F. O., Chubatsu L. S. 2004; GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli . Res Microbiol 155:491–495
    [Google Scholar]
  3. Aravind L. 1997; The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci 22:458–459
    [Google Scholar]
  4. Arcondéguy T., Jack R., Merrick M. 2001; PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105
    [Google Scholar]
  5. Arsene F., Kaminski P. A., Elmerich C. 1996; Modulation of NifA activity by PII in Azospirillum brasilense : evidence for a regulatory role of the NifA N-terminal domain. J Bacteriol 178:4830–4838
    [Google Scholar]
  6. Arsène F., Kaminski P. A., Elmerich C. 1999; Control of Azospirillum brasilense NifA activity by PII: effect of replacing Tyr residues of the NifA N-terminal domain on NifA activity. FEMS Microbiol Lett 179:339–343
    [Google Scholar]
  7. Blanco G., Drummond M., Woodley P., Kennedy C. 1993; Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii . Mol Microbiol 9:869–879
    [Google Scholar]
  8. Chen S., Liu L., Zhou X., Elmerich C., Li J. L. 2005; Functional analysis of the GAF domain of NifA in Azospirillum brasilense : effects of Tyr→Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 273:415–422
    [Google Scholar]
  9. Cheng J., Johansson M., Nordlund S. 1999; Expression of PII and glutamine synthetase is regulated by PII, the ntrBC products, and processing of the glnBA mRNA in Rhodospirillum rubrum . J Bacteriol 181:6530–6534
    [Google Scholar]
  10. Commichau F. M., Forchhammer K., Stülke J. 2006; Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167–172
    [Google Scholar]
  11. de Zamaroczy M., Paquelin A., Elmerich C. 1993; Functional organization of the glnB-glnA cluster of Azospirillum brasilense . J Bacteriol 175:2507–2515
    [Google Scholar]
  12. de Zamaroczy M., Paquelin A., Peltre G., Forchhammer K., Elmerich C. 1996; Coexistence of two structurally similar but functionally different PII proteins in Azospirillum brasilense . J Bacteriol 178:4143–4149
    [Google Scholar]
  13. Desnoues N., Lin M., Guo X., Ma L., Carreno-Lopez R., Elmerich C. 2003; Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262
    [Google Scholar]
  14. Dixon R., Kahn D. 2004; Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631
    [Google Scholar]
  15. Dodsworth J. A., Leigh J. A. 2006; Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci U S A 103:9779–9784
    [Google Scholar]
  16. Dodsworth J. A., Cady N. C., Leigh J. A. 2005; 2-Oxoglutarate and the PII homologues NifI1 and NifI2 regulate nitrogenase activity in cell extracts of Methanococcus maripaludis . Mol Microbiol 56:1527–1538
    [Google Scholar]
  17. Egener T., Sarkar A., Martin D. E., Reinhold-Hurek B. 2002; Identification of a NifL-like protein in a diazotroph of the β -subgroup of the Proteobacteria , Azoarcus sp. strain BH72. Microbiology 148:3203–3212
    [Google Scholar]
  18. Fields S. 1993; The two-hybrid system to detect protein–protein interactions. Methods: A Companion to Meth Enzymol 5:116–124
    [Google Scholar]
  19. Finn R. D., Mistry J., Schuster-Böckler B., Griffiths-Jones S., Hollich V., Lassmann T., Moxon S., Marshall M., Khanna A. other authors 2006; Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251
    [Google Scholar]
  20. Fitzmaurice W. P., Saari L. L., Lowery R. G., Ludden P. W., Roberts G. P. 1989; Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum . Mol Gen Genet 218:340–347
    [Google Scholar]
  21. Forchhammer K. 2004; Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28:319–333
    [Google Scholar]
  22. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360
    [Google Scholar]
  23. He L., Soupene E., Ninfa A., Kustu S. 1998; Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661–6667
    [Google Scholar]
  24. Huergo L. F., Chubatsu L. S., Souza E. M., Pedrosa F. O., Steffens M. B. R., Merrick M. 2006; Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense . FEBS Lett 580:5232–5236
    [Google Scholar]
  25. Huergo L. F., Merrick M., Pedrosa F. O., Chubatsu L. S., Araujo M. S., Souza E. M. 2007; Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 66:1523–1535
    [Google Scholar]
  26. Jack R., De Zamaroczy M., Merrick M. 1999; The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae . J Bacteriol 181:1156–1162
    [Google Scholar]
  27. Jiang P., Ninfa A. J. 2007; Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro . Biochemistry 46:12979–12996
    [Google Scholar]
  28. Jiang P., Peliska J. A., Ninfa A. J. 1998; Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37:12782–12794
    [Google Scholar]
  29. Johansson M., Nordlund S. 1997; Uridylylation of the PII protein in the photosynthetic bacterium Rhodospirillum rubrum . J Bacteriol 179:4190–4194
    [Google Scholar]
  30. Jonsson A., Nordlund S. 2007; In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum : the transferase activity of R. rubrum GlnD is regulated by α -ketoglutarate and divalent cations but not by glutamine. J Bacteriol 189:3471–3478
    [Google Scholar]
  31. Kamberov E. S., Atkinson M. R., Chandran P., Ninfa A. J. 1994; Effect of mutations in Escherichia coli glnL ( ntrB ), encoding nitrogen regulator II (NRII or NtrB), on the phosphatase activity involved in bacterial nitrogen regulation. J Biol Chem 269:28294–28299
    [Google Scholar]
  32. Klassen G., de Souza E. M., Yates M. G., Rigo L. U., Inaba J., Pedrosa F. O. 2001; Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense . J Bacteriol 183:6710–6713
    [Google Scholar]
  33. Klassen G., Souza E. M., Yates M. G., Rigo L. U., Costa R. M., Inaba J., Pedrosa F. O. 2005; Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein. Appl Environ Microbiol 71:5637–5641
    [Google Scholar]
  34. Larsen R. A., Wilson M. M., Guss A. M., Metcalf W. W. 2002; Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178:193–201
    [Google Scholar]
  35. Lehman L. J., Roberts G. P. 1991; Identification of an alternative nitrogenase system in Rhodospirillum rubrum . J Bacteriol 173:5705–5711
    [Google Scholar]
  36. Leigh J. A., Dodsworth J. A. 2007; Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377
    [Google Scholar]
  37. Liang J. H., Nielsen G. M., Lies D. P., Burris R. H., Roberts G. P., Ludden P. W. 1991; Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. J Bacteriol 173:6903–6909
    [Google Scholar]
  38. Liang Y. Y., de Zamaroczy M., Arséne F., Paquelin A., Elmerich C. 1992; Regulation of nitrogen fixation in Azospirillum brasilense Sp7: involvement of nifA , glnA and glnB gene products. FEMS Microbiol Lett 79:113–119
    [Google Scholar]
  39. Liang Y. Y., Arséne F., Elmerich C. 1993; Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Mol Gen Genet 240:188–196
    [Google Scholar]
  40. Lies D. P. 1994 Genetic manipulation and the overexpression analysis of posttranslational nitrogen fixation regulation in Rhodospirillum rubrum PhD thesis University of Wisconsin–Madison;
    [Google Scholar]
  41. Little R., Dixon R. 2003; The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions. J Biol Chem 278:28711–28718
    [Google Scholar]
  42. Little R., Reyes-Ramirez F., Zhang Y., van Heeswijk W. C., Dixon R. 2000; Signal transduction to the Azotobacter vinelandii NIFL–NIFA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO J 19:6041–6050
    [Google Scholar]
  43. Little R., Colombo V., Leech A., Dixon R. 2002; Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL–NifA regulatory system to respond to conditions replete for nitrogen. J Biol Chem 277:15472–15481
    [Google Scholar]
  44. Martinez S. E., Beavo J. A., Hol W. J. G. 2002; GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. Mol Interv 2:317–323
    [Google Scholar]
  45. Martinez-Argudo I., Little R., Dixon R. 2004a; Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 52:1731–1744
    [Google Scholar]
  46. Martinez-Argudo I., Little R., Shearer N., Johnson P., Dixon R. 2004b; The NifL–NifA system: a multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601–610
    [Google Scholar]
  47. Merrick M. J., Edwards R. A. 1995; Nitrogen control in bacteria. Microbiol Rev 59:604–622
    [Google Scholar]
  48. Minchin S. D., Austin S., Dixon R. A. 1988; The role of activator binding sites in transcriptional control of the divergently transcribed nifF and nifLA promoters from Klebsiella pneumoniae . Mol Microbiol 2:433–442
    [Google Scholar]
  49. Morett E., Segovia L. 1993; The σ 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  50. Morett E., Cannon W., Buck M. 1988; The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res 16:11469–11488
    [Google Scholar]
  51. Ninfa A. J., Atkinson M. R. 2000; PII signal transduction proteins. Trends Microbiol 8:172–179
    [Google Scholar]
  52. Ninfa A. J., Jiang P. 2005; PII signal transduction proteins: sensors of α -ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8:168–173
    [Google Scholar]
  53. Nordlund S., Ludden P. W. 2004; Post-translational regulation of nitrogenase in photosynthetic bacteria. In Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria pp 175–196 Edited by Klipp W., Masepohl B., Gallon J. R., Newton W. E. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  54. Porter S. C., North A. K., Kustu S. 1995; Mechanism of transcriptional activation by NtrC. In Two-Component Signal Transduction pp 147–158 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  55. Reitzer L. 2003; Nitrogen assimilation and global regulation in Escherichia coli . Annu Rev Microbiol 57:155–176
    [Google Scholar]
  56. Rey F. E., Heiniger E. K., Harwood C. S. 2007; Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671
    [Google Scholar]
  57. Reyes-Ramirez F., Little R., Dixon R. 2001; Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL–NifA complex. J Bacteriol 183:3076–3082
    [Google Scholar]
  58. Schiestl R. H., Gietz R. D. 1989; High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346
    [Google Scholar]
  59. Siddavattam D., Steibl H. D., Kreutzer R., Klingmuller W. 1995; Regulation of nif gene expression in Enterobacter agglomerans : nucleotide sequence of the nifLA operon and influence of temperature and ammonium on its transcription. Mol Gen Genet 249:629–636
    [Google Scholar]
  60. Simon R., Priefer U. B., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  61. Sonnhammer E. L. L., Eddy S. R., Birney E., Bateman A., Durbin R. 1998; Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26:320–322
    [Google Scholar]
  62. Souza E. M., Pedrosa F. O., Drummond M., Rigo L. U., Yates M. G. 1999; Control of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J Bacteriol 181:681–684
    [Google Scholar]
  63. Stips J., Thummer R., Neumann M., Schmitz R. A. 2004; GlnK effects complex formation between NifA and NifL in Klebsiella pneumoniae . Eur J Biochem 271:3379–3388
    [Google Scholar]
  64. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215
    [Google Scholar]
  65. Studholme D. J., Dixon R. 2003; Domain architectures of σ 54-dependent transcriptional activators. J Bacteriol 185:1757–1767
    [Google Scholar]
  66. Wang H., Franke C. C., Nordlund S., Norén A. 2005; Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum ; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 253:273–279
    [Google Scholar]
  67. Weiss D. S., Batut J., Klose K. E., Keener J., Kustu S. 1991; The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 67:155–167
    [Google Scholar]
  68. Wolfe D. M., Zhang Y., Roberts G. P. 2007; Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum . J Bacteriol 189:6861–6869
    [Google Scholar]
  69. Zhang Y., Burris R. H., Ludden P. W., Roberts G. P. 1993; Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense . J Bacteriol 175:6781–6788
    [Google Scholar]
  70. Zhang Y., Burris R. H., Ludden P. W., Roberts G. P. 1995a; Comparison studies of dinitrogenase reductase ADP-ribosyl transferase/dinitrogenase reductase activating glycohydrolase regulatory systems in Rhodospirillum rubrum and Azospirillum brasilense . J Bacteriol 177:2354–2359
    [Google Scholar]
  71. Zhang Y., Cummings A. D., Burris R. H., Ludden P. W., Roberts G. P. 1995b; Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum . J Bacteriol 177:5322–5326
    [Google Scholar]
  72. Zhang Y., Burris R. H., Ludden P. W., Roberts G. P. 1997; Regulation of nitrogen fixation in Azospirillum brasilense . FEMS Microbiol Lett 152:195–204
    [Google Scholar]
  73. Zhang Y., Pohlmann E. L., Ludden P. W., Roberts G. P. 2000; Mutagenesis and functional characterization of the glnB , glnA , and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum . J Bacteriol 182:983–992
    [Google Scholar]
  74. Zhang Y., Pohlmann E. L., Ludden P. W., Roberts G. P. 2001a; Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum : roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168
    [Google Scholar]
  75. Zhang Y., Pohlmann E. L., Halbleib C. M., Ludden P. W., Roberts G. P. 2001b; Effect of PII and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae . J Bacteriol 183:1610–1620
    [Google Scholar]
  76. Zhang X., Chaney M., Wigneshweraraj S. R., Schumacher J., Bordes P., Cannon W., Buck M. 2002; Mechanochemical ATPases and transcriptional activation. Mol Microbiol 45:895–903
    [Google Scholar]
  77. Zhang Y., Pohlmann E. L., Ludden P. W., Roberts G. P. 2003; Regulation of nitrogen fixation by multiple PII homologs in the photosynthetic bacterium Rhodospirillum rubrum . Symbiosis 35:85–100
    [Google Scholar]
  78. Zhang Y., Pohlmann E. L., Roberts G. P. 2004; Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum . Proc Natl Acad Sci U S A 101:2782–2787
    [Google Scholar]
  79. Zhang Y., Pohlmann E. L., Roberts G. P. 2005; GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum . J Bacteriol 187:1254–1265
    [Google Scholar]
  80. Zhang Y., Wolfe D. M., Pohlmann E. L., Conrad M. C., Roberts G. P. 2006; Effect of AmtB homologs on the posttranslational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum . Microbiology 152:2075–2089
    [Google Scholar]
  81. Zhu Y., Conrad M. C., Zhang Y., Roberts G. P. 2006; Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen-status signals. J Bacteriol 188:1866–1874
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019406-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019406-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error