1887

Abstract

Inactivation of the (PAO1) gene, encoding the Sm-like Hfq protein, resulted in pleiotropic effects that included an attenuated virulence. As regulation by Hfq often involves the action of small regulatory RNAs (sRNAs), we have used a shotgun cloning approach (RNomics) and bioinformatic tools to identify sRNAs in strain PAO1. For cDNA library construction, total RNA was extracted from PAO1 cultures either grown to stationary phase or exposed to human serum. The cDNA libraries were generated from small-sized RNAs of PAO1 after co-immunoprecipitation with Hfq. Of 400 sequenced cDNA clones, 11 mapped to intergenic regions. Band-shift assays and Northern blot analyses performed with two selected sRNAs confirmed that Hfq binds to and affects the steady-state levels of these RNAs. A proteome study performed upon overproduction of one sRNA, PhrS, implicated it in riboregulation. PhrS contains an ORF, and evidence for its translation is presented. In addition, based on surveys with structure-based bioinformatic tools, we provide an electronic compilation of putative sRNA and non-coding RNA genes of PAO1 based on their evolutionarily conserved structure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/019703-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3175.html?itemId=/content/journal/micro/10.1099/mic.0.2008/019703-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G., Margalit H., Altuvia S. 2001; Novel small RNA-encoding genes in the intergenic regions of Escherichia coli . Curr Biol 11:941–950
    [Google Scholar]
  3. Blanchette M., Kent W. J., Riemer C., Elnitski L., Smit A. F., Roskin K. M., Baertsch R., Rosenbloom K., Clawson H. other authors 2004; Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14:708–715
    [Google Scholar]
  4. Ding Y., Davis B. M., Waldor M. K. 2004; Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53:345–354
    [Google Scholar]
  5. Drew R. 1984; Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa . J Gen Microbiol 130:3101–3111
    [Google Scholar]
  6. González N., Heeb S., Valverde C., Kay E., Reimmann C., Junier T., Haas D. 2008; Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 9:167
    [Google Scholar]
  7. Gottesman S. 2005; Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404
    [Google Scholar]
  8. Guillier M., Gottesman S., Storz G. 2006; Modulating the outer membrane with small RNAs. Genes Dev 20:2338–2348
    [Google Scholar]
  9. Hendrick J. P., Hartl F. U. 1993; Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384
    [Google Scholar]
  10. Heurlier K., Williams F., Heeb S., Dormond C., Pessi G., Singer D., Camara M., Williams P., Haas D. 2004; Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945
    [Google Scholar]
  11. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102
    [Google Scholar]
  12. Hüttenhofer A., Vogel J. 2006; Experimental approaches to identify non-coding RNAs. Nucleic Acids Res 34:635–646
    [Google Scholar]
  13. Hüttenhofer A., Cavaille J., Bachellerie J. P. 2004; Experimental RNomics: a global approach to identifying small nuclear RNAs and their targets in different model organisms. Methods Mol Biol 265:409–428
    [Google Scholar]
  14. Janzon L., Arvidson S. 1990; The role of the δ-lysin gene ( hld) in the regulation of virulence genes by the accessory gene regulator ( agr) in Staphylococcus aureus . EMBO J 9:1391–1399
    [Google Scholar]
  15. Kawamoto H., Koide Y., Morita T., Aiba H. 2006; Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61:1013–1022
    [Google Scholar]
  16. Kay E., Humair B., Denervaud V., Riedel K., Spahr S., Eberl L., Valverde C., Haas D. 2006; Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa . J Bacteriol 188:6026–6033
    [Google Scholar]
  17. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. 1994; A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli . Proc Natl Acad Sci U S A 91:9223–9227
    [Google Scholar]
  18. Lenz D. H., Mok K. C., Lilley B. N., Kulkarni R. V., Wingreen N. S., Bassler B. L. 2004; The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae . Cell 118:69–82
    [Google Scholar]
  19. Lin-Chao S., Bremer H. 1986; Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli . Mol Gen Genet 203:143–149
    [Google Scholar]
  20. Livny J., Brencic A., Lory S., Waldor M. K. 2006; Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 34:3484–3493
    [Google Scholar]
  21. Lung B., Zemann A., Madej M. J., Schuelke M., Techritz S., Ruf S., Bock R., Hüttenhofer A. 2006; Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res 34:3842–3852
    [Google Scholar]
  22. Lynch M. J., Drusano G. L., Mobley H. L. 1987; Emergence of resistance to imipenem in Pseudomonas aeruginosa . Antimicrob Agents Chemother 31:1892–1896
    [Google Scholar]
  23. Massé E., Gottesman S. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A 99:4620–4625
    [Google Scholar]
  24. Massé E., Majdalani N., Gottesman S. 2003; Regulatory roles for small RNAs in bacteria. Curr Opin Microbiol 6:120–124
    [Google Scholar]
  25. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940
    [Google Scholar]
  26. McNealy T. L., Forsbach-Birk V., Shi C., Marre R. 2005; The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA. J Bacteriol 187:1527–1532
    [Google Scholar]
  27. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Moll I., Afonyushkin T., Vytvytska O., Kaberdin V. R., Bläsi U. 2003a; Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314
    [Google Scholar]
  29. Moll I., Leitsch D., Steinhauser T., Bläsi U. 2003b; RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep 4:284–289
    [Google Scholar]
  30. Møller T., Franch T., Udesen C., Gerdes K., Valentin-Hansen P. 2002; Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 16:1696–1706
    [Google Scholar]
  31. Nakao H., Watanabe H., Nakayama S., Takeda T. 1995; yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene ( hfq . Mol Microbiol 18:859–865
    [Google Scholar]
  32. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Camara M., Haas D., Williams P. 2001; The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa . J Bacteriol 183:6676–6683
    [Google Scholar]
  33. Repoila F., Majdalani N., Gottesman S. 2003; Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48:855–861
    [Google Scholar]
  34. Rist M., Kertesz M. A. 1998; Construction of improved plasmid vectors for promoter characterization in Pseudomonas aeruginosa and other Gram-negative bacteria. FEMS Microbiol Lett 169:179–183
    [Google Scholar]
  35. Robertson G. T., Roop R. M. Jr 1999; The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700
    [Google Scholar]
  36. Rose D., Hertel J., Reiche K., Stadler P. F., Hackermüller J. 2008; NcDNAlign: plausible multiple alignments of non-protein-coding genomic sequences. Genomics 92:65–74
    [Google Scholar]
  37. Schnider-Keel U., Seematter A., Maurhofer M., Blumer C., Duffy B., Gigot-Bonnefoy C., Reimmann C., No R., Défago G. other authors 2000; Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225
    [Google Scholar]
  38. Segal R., Ron E. Z. 1996; Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol Lett 138:1–10
    [Google Scholar]
  39. Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Boucherie H., Mann M. 1996; Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93:14440–14445
    [Google Scholar]
  40. Sittka A., Pfeiffer V., Tedin K., Vogel J. 2007; The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium . Mol Microbiol 63:193–217
    [Google Scholar]
  41. Sledjeski D. D., Whitman C., Zhang A. 2001; Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183:1997–2005
    [Google Scholar]
  42. Sonnleitner E., Hagens S., Rosenau F., Wilhelm S., Habel A., Jager K. E., Bläsi U. 2003; Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 35:217–228
    [Google Scholar]
  43. Sonnleitner E., Schuster M., Sorger-Domenigg T., Greenberg E. P., Bläsi U. 2006; Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa . Mol Microbiol 59:1542–1558
    [Google Scholar]
  44. Sorger-Domenigg T., Sonnleitner E., Kaberdin V. R., Bläsi U. 2007; Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem Biophys Res Commun 352:769–773
    [Google Scholar]
  45. Trias J., Nikaido H. 1990; Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem 265:15680–15684
    [Google Scholar]
  46. Ulanova M., Petersen T. D., Ciofu O., Jensen P., Hahn-Zoric M., Hanson L. A., Hoiby N. 1997; The clonal antibody response to Pseudomonas aeruginosa heat shock protein is highly diverse in cystic fibrosis patients. APMIS 105:449–456
    [Google Scholar]
  47. Valverde C., Heeb S., Keel C., Haas D. 2003; RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 50:1361–1379
    [Google Scholar]
  48. Van Delden C. 2004; Virulence factors in Pseudomonas aeruginosa . In Pseudomonas vol. 2 pp 3–45 Edited by Ramos J. L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  49. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560
    [Google Scholar]
  50. Vecerek B., Moll I., Afonyushkin T., Kaberdin V., Bläsi U. 2003; Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli . Mol Microbiol 50:897–909
    [Google Scholar]
  51. Vogel J., Bartels V., Tang T. H., Churakov G., Slagter-Jager J. G., Hüttenhofer A., Wagner E. G. 2003; RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31:6435–6443
    [Google Scholar]
  52. Wadler C. S., Vanderpool C. K. 2007; A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 104:20454–20459
    [Google Scholar]
  53. Washietl S. 2006; RNAz 1.0. Department for Theoretical Chemistry. University Vienna 3:
    [Google Scholar]
  54. Washietl S., Hofacker I. L., Stadler P. F. 2005a; Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A 102:2454–2459
    [Google Scholar]
  55. Washietl S., Hofacker I. L., Lukasser M., Hüttenhofer A., Stadler P. F. 2005b; Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23:1383–1390
    [Google Scholar]
  56. Wassarman K. M., Repoila F., Rosenow C., Storz G., Gottesman S. 2001; Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651
    [Google Scholar]
  57. Wilderman P. J., Sowa N. A., FitzGerald D. J., FitzGerald P. C., Gottesman S., Ochsner U. A., Vasil M. L. 2004; Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101:9792–9797
    [Google Scholar]
  58. Williams K. P., Bartel D. P. 1996; Phylogenetic analysis of tmRNA secondary structure. RNA 2:1306–1310
    [Google Scholar]
  59. Wilson S. A., Drew R. E. 1995; Transcriptional analysis of the amidase operon from Pseudomonas aeruginosa . J Bacteriol 177:3052–3057
    [Google Scholar]
  60. Worhunsky D. J., Godek K., Litsch S., Schlax P. J. 2003; Interactions of the non-coding RNA DsrA and RpoS mRNA with the 30 S ribosomal subunit. J Biol Chem 278:15815–15824
    [Google Scholar]
  61. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  62. Zhang A., Wassarman K. M., Ortega J., Steven A. C., Storz G. 2002; The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9:11–22
    [Google Scholar]
  63. Zhang A., Wassarman K. M., Rosenow C., Tjaden B. C., Storz G., Gottesman S. 2003; Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124
    [Google Scholar]
  64. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/019703-0
Loading
/content/journal/micro/10.1099/mic.0.2008/019703-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error