1887

Abstract

The xylanase Xys1L from JM8 is known to be processed extracellularly, to produce a protein of 33·7 kDa, Xys1S, that retains catalytic activity but not its cellulose-binding capacity. This paper demonstrates that at least five serine proteases isolated from spp. have the ability to process the xylanase Xys1L. The genes of two of these extracellular serine proteases, denominated SpB and SpC, were cloned from 66 (a strain commonly used as a host for protein secretion), sequenced, and overexpressed in ; both purified proteases were able to process Xys1L . Three other previously reported purified serine proteases, SAM-P20, SAM-P26 and SAM-P45, also processed Xys1L . The involvement of serine proteases in xylanase processing-degradation was demonstrated by co-expression of the xylanase gene () and the gene encoding the serine protease inhibitor (SLPI) from . Co-expression prevented processing and degradation of Xys1L and resulted in a threefold increase in the xylanase activity present in the culture supernatant. SpB and SpC also have the capacity to process other secreted proteins such as p40, a cellulose-binding protein from JM8, but do not have any clear effect on other secreted proteins such as amylase (Amy) from and xylanase Xyl30 from .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26113-0
2003-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491623.html?itemId=/content/journal/micro/10.1099/mic.0.26113-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Bajpai P. 1999; Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157
    [Google Scholar]
  3. Beg Q. K., Bhushan B., Kapoor M., Hoondal G. S. 2000; Enhanced production of a thermostable xylanase from Streptomyces sp . QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147
    [Google Scholar]
  5. Bernfeld P. 1951; Enzymes of starch degradation and synthesis. Adv Enzymol 12:379–428
    [Google Scholar]
  6. Bhatnagar R. K., Doull J. L., Vining L. C. 1988; Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae : studies in batch and continuous cultures. Can J Microbiol 34:1217–1223
    [Google Scholar]
  7. Biely P., Mislovicova D., Toman R. 1985; Soluble chromogenic substrates for the assay of endo-1,4- β -xylanases and endo-1,4- β -glucanases. Anal Biochem 144:142–146
    [Google Scholar]
  8. Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Ferreira L. M., Bolam D. N., Gilbert H. J. 1997; Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 57:59–69
    [Google Scholar]
  9. Calza R. E., Irwin D. C., Wilson D. B. 1985; Purification and characterization of two β -1,4-endoglucanases from Thermonospora fusca . Biochemistry 24:7797–7804
    [Google Scholar]
  10. Champness W. C. 1988; New loci required for Streptomyces coelicolor morphological and physiological differentiation. J Bacteriol 170:1168–1174
    [Google Scholar]
  11. Chater K. F. 1989; Multilevel regulation of Streptomyces differentiation. Trends Genet 5:372–377
    [Google Scholar]
  12. Collins T., Meuwis M. A., Stals I., Claeyssens M., Feller G., Gerday C. 2002; A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139
    [Google Scholar]
  13. Díaz-Rodríguez E., Cabrera N., Esparis-Ogando A., Montero J. C., Pandiella A. 1999; Cleavage of the TrkA neurotrophin receptor by multiple metalloproteases generates signalling-competent truncated forms. Eur J Neurosci 11:1421–1430
    [Google Scholar]
  14. Ellaiah P., Srinivasulu B. 1996; Production of extracellular protease by Streptomyces fradiae . Hindustan Antibiot Bull 38:41–47
    [Google Scholar]
  15. Garda A. L., Fernandez-Abalos J. M., Sanchez P., Ruiz-Arribas A., Santamaria R. I. 1997; Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8. Biochem J 324:403–411
    [Google Scholar]
  16. Gilkes N. R., Warren R. A., Miller R. C. Jr, Kilburn D. G. 1988; Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 263:10401–10407
    [Google Scholar]
  17. Hodgson D. A. 2000; Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238
    [Google Scholar]
  18. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Centre;
    [Google Scholar]
  19. Kojima I., Cheng Y. R., Mohan V., Demain A. L. 1995; Carbon source nutrition of rapamycin biosynthesis in Streptomyces hygroscopicus . J Ind Microbiol 14:436–439
    [Google Scholar]
  20. Kuramoto A., Lezhava A., Taguchi S., Momose H., Kinashi H. 1996; The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol Lett 139:37–42
    [Google Scholar]
  21. Lao G., Wilson D. B. 1996; Cloning, sequencing, and expression of a Thermomonospora fusca protease gene in Streptomyces lividans . Appl Environ Microbiol 62:4256–4259
    [Google Scholar]
  22. Marck C. 1988; ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836
    [Google Scholar]
  23. Moorman M., Schlochtermeier A., Schrempf H. 1993; Biochemical characterization of a protease involved in the processing of a Streptomyces reticuli cellulase (avicelase). Appl Environ Microbiol 59:1573–1578
    [Google Scholar]
  24. Morrisey J. H. 1981; Silver stain for proteins in polyacrylamide gel: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310
    [Google Scholar]
  25. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448
    [Google Scholar]
  26. Peterson G. L. 1977; A simplification of the protein assay method of Lowry et al . which is more generally applicable. Anal Biochem 83:346–356
    [Google Scholar]
  27. Ruiz-Arribas A., Fernandez-Abalos J. M., Sanchez P., Garda A. L., Santamaria R. I. 1995; Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419
    [Google Scholar]
  28. Ruiz-Arribas A., Sanchez P., Calvete J. J., Raida M., Fernandez-Abalos J. M., Santamaria R. I. 1997; Analysis of xysA , a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microbiol 63:2983–2988
    [Google Scholar]
  29. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Sampath P., Chandrakasan G. 1998; Physiological and nutritional factors affecting biosynthesis of extracellular protease by Streptomyces spp. G157. New Microbiol 21:55–63
    [Google Scholar]
  31. Sidhu S. S., Kalmar G. B., Willis L. G., Borgford T. J. 1994; Streptomyces griseus protease C. A novel enzyme of the chymotrypsin superfamily. J Biol Chem 269:20167–20171
    [Google Scholar]
  32. Suzuki M., Taguchi S., Yamada S., Kojima S., Miura K. I., Momose H. 1997; A novel member of the subtilisin-like protease family from Streptomyces albogriseolus . J Bacteriol 179:430–438
    [Google Scholar]
  33. Taguchi S., Kikuchi H., Kojima S., Kumagai I., Nakase T., Miura K., Momose H. 1993; High frequency of SSI-like protease inhibitors among Streptomyces . Biosci Biotechnol Biochem 57:522–524
    [Google Scholar]
  34. Taguchi S., Odaka A., Watanabe Y., Momose H. 1995a; Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl Environ Microbiol 61:180–186
    [Google Scholar]
  35. Taguchi S., Suzuki M., Kojima S., Miura K., Momose H. 1995b; Streptomyces serine protease (SAM-P20): recombinant production, characterization, and interaction with endogenous protease inhibitor. J Bacteriol 177:6638–6643
    [Google Scholar]
  36. Taguchi S., Kojima S., Terabe M., Kumazawa Y., Kohriyama H., Suzuki M., Miura K., Momose H. 1997; Molecular phylogenetic characterization of Streptomyces protease inhibitor family. J Mol Evol 44:542–551
    [Google Scholar]
  37. Taguchi S., Yamada S., Kojima S., Momose H. 1998; An endogenous target protease, SAM-P26, of Streptomyces protease inhibitor (SSI): primary structure, enzymatic characterization, and its interaction with SSI. J Biochem 124:804–810
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  39. Vigal T., Gil J. A., Daza A., Garcia-Gonzalez M. D., Martin J. F. 1991; Cloning, characterization and expression of an alpha-amylase gene from Streptomyces griseus IMRU3570. Mol Gen Genet 225:278–288
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26113-0
Loading
/content/journal/micro/10.1099/mic.0.26113-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error