1887

Abstract

, the causative agent of enteric septicaemia of catfish (ESC), expresses long O polysaccharide (OPS) chains on its surface. The authors previously reported the construction of an isogenic OPS mutant strain and demonstrated that this strain is avirulent in channel catfish. This paper reports the cloning of the OPS biosynthesis gene cluster and identification of the mutated gene in the OPS-negative strain. The sequenced region contains eight complete ORFs and one incomplete ORF encoding LPS biosynthesis enzymes. The mutated gene (designated ) was similar to other bacterial galactose-4-epimerases. Glycosyl composition analysis indicated that wild-type OPS contains higher amounts of galactose and -acetylgalactosamine than the OPS mutant strain, which correlated well with predicted functions of the genes identified in the OPS biosynthesis cluster. The OPS mutant had a relatively small, but significant, decrease in its ability to survive in normal catfish serum compared to wild-type , but it retained the ability to resist killing by catfish neutrophils.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26138-0
2003-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491409.html?itemId=/content/journal/micro/10.1099/mic.0.26138-0&mimeType=html&fmt=ahah

References

  1. Ainsworth A. J. 1993; Carbohydrate and lectin interactions with Edwardsiella ictaluri and channel catfish, Ictalurus punctatus (Rafinesque), anterior kidney leucocytes and hepatocytes. J Fish Dis 16:449–459
    [Google Scholar]
  2. Ainsworth A. J., Dexiang C. 1990; Differences in the phagocytosis of four bacteria by channel catfish neutrophils. Dev Comp Immunol 14:201–209
    [Google Scholar]
  3. Ainsworth A. J., Capley G., Waterstrat P., Munson D. 1986; Use of monoclonal antibodies in the indirect fluorescent antibody technique (IFA) for the diagnosis of Edwardsiella ictaluri . J Fish Dis 9:439–444
    [Google Scholar]
  4. Allen C. A., Adams L. G., Ficht T. A. 1998; Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66:1008–1016
    [Google Scholar]
  5. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  6. Amaro C., Fouz B., Biosca E. G., Marco-Noales E., Collado R. 1997; The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels. Infect Immun 65:2475–2479
    [Google Scholar]
  7. Amor P. A., Whitfield C. 1997; Molecular and functional analysis of genes required for expression of group IB K antigens in Escherichia coli : characterization of the his -region containing gene clusters for multiple cell-surface polysaccharides. Mol Microbiol 26:145–161
    [Google Scholar]
  8. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1994 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  9. Baldwin T. J., Newton J. C. 1993; Pathogenesis of enteric septicemia of channel catfish, caused by Edwardsiella ictaluri : bacteriologic and light and electron microscopic findings. J Aquat Anim Health 5:189–198
    [Google Scholar]
  10. Baldwin T. J., Collins L. A., Newton J. C. 1997; Antigens of Edwardsiella ictaluri recognised by serum antibodies from naturally infected channel catfish. Fish Shellfish Immunol 7:261–271
    [Google Scholar]
  11. Bastin D. A., Stevenson G., Brown P. K., Haase A., Reeves P. R. 1993; Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7:725–734
    [Google Scholar]
  12. Belanger M., Burrows L. L., Lam J. S. 1999; Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology 145:3505–3521
    [Google Scholar]
  13. Bengoechea J. A., Pinta E., Salminen T., Oertelt C., Holst O., Radziejewska-Lebrecht J., Piotrowska-Seget Z., Venho R., Skurnik M. 2002; Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O : 8. J Bacteriol 184:4277–4287
    [Google Scholar]
  14. Bertolini J. M., Cipriano R. C., Pyle S. W., McLaughlin J. J. 1990; Serological investigation of the fish pathogen Edwardsiella ictaluri , cause of enteric septicemia of catfish. J Wildl Dis 26:246–252
    [Google Scholar]
  15. Burns S. M., Hull S. I. 1999; Loss of resistance to ingestion and phagocytic killing by O(−)and K(−) mutants of a uropathogenic Escherichia coli O75 : K5 strain. Infect Immun 67:3757–3762
    [Google Scholar]
  16. Carlson R. W., Reuhs B., Chen T. B., Bhat U. R., Noel K. D. 1995; Lipopolysaccharide core structures in Rhizobium etli and mutants deficient in O-antigen. J Biol Chem 270:11783–11788
    [Google Scholar]
  17. Engels W., Endert J., Kamps M. A., van Boven C. P. 1985; Role of lipopolysaccharide in opsonization and phagocytosis of Pseudomonas aeruginosa . Infect Immun 49:182–189
    [Google Scholar]
  18. Frackman S., Anhalt M., Nealson K. H. 1990; Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens . J Bacteriol 172:5767–5773
    [Google Scholar]
  19. Geremia R. A., Petroni E. A., Ielpi L., Henrissat B. 1996; Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic alpha-mannosyltransferases. Biochem J 318:133–138
    [Google Scholar]
  20. Gilbert M., Karwaski M. F., Bernatchez S., Young N. M., Taboada E., Michniewicz J., Cunningham A. M., Wakarchuk W. W. 2002; The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni . Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem 277:327–337
    [Google Scholar]
  21. Hawke J. P., McWhorter A. C., Steigerwalt A. G., Brenner D. J. 1981; Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int J Syst Bacteriol 31:396–400
    [Google Scholar]
  22. Heinrichs D. E., Yethon J. A., Whitfield C. 1998a; Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica . Mol Microbiol 30:221–232
    [Google Scholar]
  23. Heinrichs D. E., Yethon J. A., Amor P. A., Whitfield C. 1998b; The assembly system for the outer core portion of R1- and R4-type lipopolysaccharides of Escherichia coli . The R1 core-specific beta-glucosyltransferase provides a novel attachment site for O-polysaccharides. J Biol Chem 273:29497–29505
    [Google Scholar]
  24. High N. J., Deadman M. E., Moxon E. R. 1993; The role of a repetitive DNA motif (5′-CAAT-3′) in the variable expression of the Haemophilus influenzae lipopolysaccharide epitope alpha Gal(1–4)beta Gal. Mol Microbiol 9:1275–1282
    [Google Scholar]
  25. Hobbs M., Reeves P. R. 1994; The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12:855–856
    [Google Scholar]
  26. Jedani K. E., Stroeher U. H., Manning P. A. 2000; Distribution of IS 1358 and linkage to rfb -related genes in Vibrio anguillarum . Microbiology 146:323–331
    [Google Scholar]
  27. Kido N., Torgov V. I., Sugiyama T., Uchiya K., Sugihara H., Komatsu T., Kato N., Jann K. 1995; Expression of the O9 polysaccharide of Escherichia coli : sequencing of the E. coli O9 rfb gene cluster, characterization of mannosyl transferases, and evidence for an ATP-binding cassette transport system. J Bacteriol 177:2178–2187
    [Google Scholar]
  28. Kohler H., Rodrigues S. P., McCormick B. A. 2002; Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70:1150–1158
    [Google Scholar]
  29. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  31. Lawrence M. L., Cooper R. K., Thune R. L. 1997; Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant. Infect Immun 65:4642–4651
    [Google Scholar]
  32. Lawrence M. L., Banes M. M., Williams M. L. 2001; Phenotype and virulence of a transposon-derived lipopolysaccharide O side-chain mutant strain of Edwardsiella ictaluri . J Aquat Anim Health 13:291–299
    [Google Scholar]
  33. Liu D., Cole R. A., Reeves P. R. 1996; An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J Bacteriol 178:2102–2107
    [Google Scholar]
  34. Marolda C. L., Valvano M. A. 1996; The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose. Mol Microbiol 22:827–840
    [Google Scholar]
  35. Maurer K. J., Lawrence M. L., Fernandez D. H., Thune R. L. 2001; Evaluation and optimization of a DNA transfer system for Edwardsiella ictaluri . J Aquat Anim Health 13:163–167
    [Google Scholar]
  36. Merino S., Alberti S., Tomas J. M. 1994; Aeromonas salmonicida resistance to complement-mediated killing. Infect Immun 62:5483–5490
    [Google Scholar]
  37. Merino S., Rubires X., Aguilar A., Alberti S., Hernandez-Alles S., Benedi V. J., Tomas J. M. 1996; Mesophilic Aeromonas sp. serogroup O : 11 resistance to complement-mediated killing. Infect Immun 64:5302–5309
    [Google Scholar]
  38. Merino S., Altarriba M., Izquierdo L., Nogueras M. M., Regue M., Tomas J. M. 2000; Cloning and sequencing of the Klebsiella pneumoniae O5 wb gene cluster and its role in pathogenesis. Infect Immun 68:2435–2440
    [Google Scholar]
  39. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  40. Miyazaki T., Plumb J. A. 1985; Histopathology of Edwarsiella ictaluri in channel catfish, Ictalurus punctatus (Rafinesque. J Fish Dis 8:389–392
    [Google Scholar]
  41. Moore M. M., Thune R. L. 1999; Evaluation of antigenic and nonantigenic proteins of Edwardsiella ictaluri at two culture temperatures and in enriched and minimal media using two-dimensional polyacrylamide gel electrophoresis. J Aquat Anim Health 11:262–274
    [Google Scholar]
  42. Morona R., Mavris M., Fallarino A., Manning P. A. 1994; Characterization of the rfc region of Shigella flexneri . J Bacteriol 176:733–747
    [Google Scholar]
  43. Newton J. C., Triche P. L. 1993a; Electrophoretic and immunochemical characterization of lipopolysaccharide of Edwardsiella ictaluri from channel catfish. J Aquat Anim Health 5:246–253
    [Google Scholar]
  44. Newton J. C., Triche P. L. 1993b; Isolation and characterization of flagella from Edwardsiella ictaluri . J Aquat Anim Health 5:16–22
    [Google Scholar]
  45. Ohtsubo H., Nyman K., Doroszkiewicz W., Ohtsubo E. 1981; Multiple copies of iso-insertion sequences of IS 1 in Shigella dysenteriae chromosome. Nature 292:640–643
    [Google Scholar]
  46. Ourth D. D., Bachinski L. M. 1987; Bacterial sialic acid modulates activation of the alternative complement pathway of channel catfish ( Ictalurus punctatus . Dev Comp Immunol 11:551–564
    [Google Scholar]
  47. Ourth D. D., Wilson E. A. 1981; Agglutination and bactericidal responses of the channel catfish to Salmonella paratyphi . Dev Comp Immunol 5:261–270
    [Google Scholar]
  48. Ourth D. D., Wilson E. A. 1982; Alternate pathway of complement and bactericidal response of the channel catfish to Salmonella paratyphi . Dev Comp Immunol 6:75–85
    [Google Scholar]
  49. Paton A. W., Paton J. C. 1999; Molecular characterization of the locus encoding biosynthesis of the lipopolysaccharide O antigen of Escherichia coli serotype O113. Infect Immun 67:5930–5937
    [Google Scholar]
  50. Perna N. T., Plunkett G., Burland V. 25 other authors 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409:529–533
    [Google Scholar]
  51. Pierson D. E., Carlson S. 1996; Identification of the galE gene and a galE homolog and characterization of their roles in the biosynthesis of lipopolysaccharide in a serotype O : 8 strain of Yersinia enterocolitica . J Bacteriol 178:5916–5924
    [Google Scholar]
  52. Pilz D., Wachter E., Heesemann J., Brade V. 1991; Evasion of Yersinia enterocolitica serotype O3 from complement-mediated killing. Behring Inst Mitt 88:183–193
    [Google Scholar]
  53. Price R. E., Templeton J. W., Adams L. G. 1990; Survival of smooth, rough and transposon mutant strains of Brucella abortus in bovine mammary macrophages. Vet Immunol Immunopathol 26:353–365
    [Google Scholar]
  54. Reeves P. 1993; Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet 9:17–22
    [Google Scholar]
  55. Schnaitman C. A., Klena J. D. 1993; Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682
    [Google Scholar]
  56. Skurnik M., Venho R., Toivanen P., al-Hendy A. 1995; A novel locus of Yersinia enterocolitica serotype O : 3 involved in lipopolysaccharide outer core biosynthesis. Mol Microbiol 17:575–594
    [Google Scholar]
  57. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
    [Google Scholar]
  58. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  59. Tullius M. V., Phillips N. J., Scheffler N. K., Samuels N. M., Munson R. S. Jr, Hansen E. J., Stevens-Riley M., Campagnari A. A., Gibson B. W. 2002; The lbgAB gene cluster of Haemophilus ducreyi encodes a beta-1,4-galactosyltransferase and an alpha-1,6-dd-heptosyltransferase involved in lipooligosaccharide biosynthesis. Infect Immun 70:2853–2861
    [Google Scholar]
  60. Unge A., Tombolini R., Molbak L., Jansson J. K. 1999; Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813–821
    [Google Scholar]
  61. Waltman W. D., Shotts E. B., Hsu T. C. 1986; Biochemical characteristics of Edwardsiella ictaluri . Appl Environ Microbiol 51:101–104
    [Google Scholar]
  62. Wang L., Jensen S., Hallman R., Reeves P. R. 1998; Expression of the O antigen gene cluster is regulated by RfaH through the JUMPstart sequence. FEMS Microbiol Lett 165:201–206
    [Google Scholar]
  63. Wang L., Qu W., Reeves P. R. 2001; Sequence analysis of four Shigella boydii O-antigen loci: implication for Escherichia coli and Shigella relationships. Infect Immun 69:6923–6930
    [Google Scholar]
  64. Waterstrat P. R., Ainsworth A. J., Capley G. 1988; Use of a discontinuous Percoll gradient technique for the separation of channel catfish, Ictalurus punctatus (Rafinesque), peripheral blood leucocytes. J Fish Dis 11:289–294
    [Google Scholar]
  65. Wolfe K. G., Plumb J. A., Morrison E. E. 1998; Lectin binding characteristics of the olfactory mucosa of channel catfish: potential factors in attachment of Edwardsiella ictaluri . J Aquat Anim Health 10:348–360
    [Google Scholar]
  66. Xiang S. H., Hobbs M., Reeves P. R. 1994; Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J Bacteriol 176:4357–4365
    [Google Scholar]
  67. Yamasaki S., Shimizu T., Hoshino K., Ho S. T., Shimada T., Nair G. B., Takeda Y. 1999; The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene 237:321–332
    [Google Scholar]
  68. York W. S., Darvill A. G., McNeill M., Stevenson T. T., Albersheim P. 1986; Isolation and characterization of cell walls and cell wall components. Methods Enzymol 118:3–40
    [Google Scholar]
  69. Zhang L., al-Hendy A., Toivanen P., Skurnik M. 1993; Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O : 3: similarities to the dTDP-l-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9:309–321
    [Google Scholar]
  70. Zientz E., Janausch I. G., Six S., Unden G. 1999; Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli . J Bacteriol 181:3716–3720
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26138-0
Loading
/content/journal/micro/10.1099/mic.0.26138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error