1887

Abstract

Copper ions induce expression of the operon encoding a metallochaperone, CopZ, and a CPx-type ATPase efflux protein, CopA. The promoter region contains an inverted repeat sequence similar to that recognized by the mercury-sensing MerR protein. To investigate the possible involvement of MerR homologues in regulation, null mutations were engineered affecting each of four putative MerR-type regulators: , , and . Two of these genes affected copper regulation. Mutation of (hereafter renamed ) dramatically reduced copper induction of , and purified CueR bound with high affinity to the promoter region. These results suggest that CueR is a direct regulator of transcription that mediates copper induction. Surprisingly, a mutation also reduced copper induction of . Sequence analysis suggested that was cotranscribed with , encoding a putative multidrug efflux protein. The operon is autoregulated: a mutation derepressed the promoter and purified YfmP bound the promoter region, but not the promoter region. Since the mutant strain was predicted to express elevated levels of the YfmO efflux pump, it was hypothesized that copper efflux might be responsible for the reduced induction. Consistent with this model, in a double mutant copper induction of was normal. The results demonstrate the direct regulation of the copper efflux system by CueR, and indirect regulation by a putative multidrug efflux system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26225-0
2003-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493413.html?itemId=/content/journal/micro/10.1099/mic.0.26225-0&mimeType=html&fmt=ahah

References

  1. Adaikkalam V., Swarup S. 2002; Molecular characterization of an operon, cueAR , encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida . Microbiology 148:2857–2867
    [Google Scholar]
  2. Ansari A. Z., Chael M. L., O'Halloran T. V. 1992; Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 355:87–89
    [Google Scholar]
  3. Ansari A. Z., Bradner J. E., O'Halloran T. V. 1995; DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:371–375
    [Google Scholar]
  4. Banci L., Rosato A. 2003; Structural genomics of proteins involved in copper homeostasis. Acc Chem Res 36:215–221
    [Google Scholar]
  5. Banci L., Bertini I., Del Conte R., Markey J., Ruiz-Duenas F. J. 2001; Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40:15660–15668
    [Google Scholar]
  6. Banci L., Bertini I., Ciofi-Baffoni S., D'Onofrio M., Gonnelli L., Marhuenda-Egea F. C., Ruiz-Duenas F. J. 2002; Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol 317:415–429
    [Google Scholar]
  7. Banci L., Bertini I., Ciofi-Baffoni S., Del Conte R., Gonnelli L. 2003; Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis . Biochemistry 42:1939–1949
    [Google Scholar]
  8. Borremans B., Hobman J. L., Provoost A., Brown N. L., van Der Lelie D. 2001; Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658
    [Google Scholar]
  9. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P. 1999; ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli . Mol Microbiol 31:893–902
    [Google Scholar]
  10. Brocklehurst K. R., Megit S. J., Morby A. P. 2003; Characterisation of CadR from Pseudomonas aeruginosa : a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun 308:234–239
    [Google Scholar]
  11. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. 2003; The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163
    [Google Scholar]
  12. Bush A. I., Tanzi R. E. 2002; The galvanization of beta-amyloid in Alzheimer's disease. Proc Natl Acad Sci U S A 99:7317–7319
    [Google Scholar]
  13. Cavet J. S., Meng W., Pennella M. A., Appelhoff R. J., Giedroc D. P., Robinson N. J. 2002; A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem 277:38441–38448
    [Google Scholar]
  14. Cobine P. A., George G. N., Jones C. E., Wickramasinghe W. A., Solioz M., Dameron C. T. 2002; Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829
    [Google Scholar]
  15. Cutting S. M., Vander Horn P. B. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp 27–74 Edited by Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  16. Finney L. A., O'Halloran T. V. 2003; Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936
    [Google Scholar]
  17. Fisher S. H. 1999; Regulation of nitrogen metabolism in Bacillus subtilis : vive la difference!. Mol Microbiol 32:223–232
    [Google Scholar]
  18. Franke S., Grass G., Rensing C., Nies D. H. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli . J Bacteriol 185:3804–3812
    [Google Scholar]
  19. Gaballa A., Helmann J. D. 2003; Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16:497–505
    [Google Scholar]
  20. Guedon E., Helmann J. D. 2003; Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol 48:495–506
    [Google Scholar]
  21. Guérout-Fleury A.-M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene 167:335–336
    [Google Scholar]
  22. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177
    [Google Scholar]
  23. Harris E. D. 2000; Cellular copper transport and metabolism. Annu Rev Nutr 20:291–310
    [Google Scholar]
  24. Heldwein E. E., Brennan R. G. 2001; Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378–382
    [Google Scholar]
  25. Helmann J. D., Wang Y., Mahler I., Walsh C. T. 1989; Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J Bacteriol 171:222–229
    [Google Scholar]
  26. Herbig A., Helmann J. D. 2002; Metal ion uptake and oxidative stress. In Bacillus subtilis and its Closest Relatives pp 405–414 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Imlay J. A. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153
    [Google Scholar]
  28. Khan S., Brocklehurst K. R., Jones G. W., Morby A. P. 2002; The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli . Biochem Biophys Res Commun 299:438–445
    [Google Scholar]
  29. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y. 2002; The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD . FEMS Microbiol Lett 210:99–103
    [Google Scholar]
  30. Lee S. W., Glickmann E., Cooksey D. A. 2001; Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67:1437–1444
    [Google Scholar]
  31. Llanos R. M., Mercer J. F. 2002; The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 21:259–270
    [Google Scholar]
  32. Mata M. T., Baquero F., Perez-Diaz J. C. 2000; A multidrug efflux transporter in Listeria monocytogenes . FEMS Microbiol Lett 187:185–188
    [Google Scholar]
  33. Miller J. H. 1972 Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  34. Misra T. K., Brown N. L., Fritzinger D. C., Pridmore R. D., Barnes W. M., Haberstroh L., Silver S. 1984; Mercuric ion-resistance operons of plasmid R100 and transposon Tn 501 : the beginning of the operon including the regulatory region and the first two structural genes. Proc Natl Acad Sci U S A 81:5975–5979
    [Google Scholar]
  35. Outten C. E., Outten F. W., O'Halloran T. V. 1999; DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli . J Biol Chem 274:37517–37524
    [Google Scholar]
  36. Outten F. W., Outten C. E., Hale J., O'Halloran T. V. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR . J Biol Chem 275:31024–31029
    [Google Scholar]
  37. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677
    [Google Scholar]
  38. Petersen C., Møller L. B. 2000; Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261:289–298
    [Google Scholar]
  39. Radford D. S., Kihlken M. A., Borrelly G. P., Harwood C. R., Le Brun N. E., Cavet J. S. 2003; CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220:105–112
    [Google Scholar]
  40. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R. 2002; ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43:981–991
    [Google Scholar]
  41. Rensing C., Grass G. 2003; Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213
    [Google Scholar]
  42. Rogers E. E., Guerinot M. L. 2002; FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis . Plant Cell 14:1787–1799
    [Google Scholar]
  43. Rutherford J. C., Cavet J. S., Robinson N. J. 1999; Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J Biol Chem 274:25827–25832
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Schumacher M. A., Brennan R. G. 2002; Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 45:885–893
    [Google Scholar]
  46. Slack F. J., Mueller J. P., Sonenshein A. L. 1993; Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. J Bacteriol 175:4605–4614
    [Google Scholar]
  47. Solioz M., Stoyanov J. V. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195
    [Google Scholar]
  48. Stoyanov J. V., Brown N. L. 2003; The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem 278:1407–1410
    [Google Scholar]
  49. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511
    [Google Scholar]
  50. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  51. Touati D. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6
    [Google Scholar]
  52. Vander Horn P. B., Zahler S. A. 1992; Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis . J Bacteriol 174:3928–3935
    [Google Scholar]
  53. Wach A. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae . Yeast 12:259–265
    [Google Scholar]
  54. Wang W., Guffanti A. A., Wei Y., Ito M., Krulwich T. A. 2000; Two types of Bacillus subtilis tetA(L) deletion strains reveal the physiological importance of TetA(L)in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J Bacteriol 182:2088–2095
    [Google Scholar]
  55. Zuber P., Losick R. 1987; Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis . J Bacteriol 169:2223–2230
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26225-0
Loading
/content/journal/micro/10.1099/mic.0.26225-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error