1887

Abstract

has two superoxide dismutases (SODs), encoded by the and genes, which inactivate harmful superoxide radicals () encountered during host infection or generated from aerobic metabolism. The transcriptional start sites have been mapped and expression analysis on reporter fusions in both genes has been carried out. Under standard growth conditions, manganese (Mn), a mineral superoxide scavenger, elevated total SOD activity but had no effect on the transcription of either gene. Transcription of and was most strongly induced by either internally or externally generated , respectively. Sensitivity to internally generated was linked with SodA deficiency. Mn supplementation completely rescued a mutant when challenged by internally generated , and this was growth-phase-dependent. Sensitivity to externally generated stress was only observed in a mutant and was Mn-independent. In a mouse abscess model of infection, isogenic , and mutants had reduced virulence compared to the parental strain, showing the importance of the enzymic scavenging system for the survival of the pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26353-0
2003-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492749.html?itemId=/content/journal/micro/10.1099/mic.0.26353-0&mimeType=html&fmt=ahah

References

  1. Al-Maghrebi M., Fridovich I., Benov L. 2002; Manganese supplementation relieves the phenotypic deficits seen in superoxide-dismutase-null Escherichia coli . Arch Biochem Biophys 402:104–109
    [Google Scholar]
  2. Archibald F. S., Fridovich I. 1981; Manganese and defenses against oxygen toxicity in Lactobacillus plantarum . J Bacteriol 145:442–451
    [Google Scholar]
  3. Archibald F. S., Fridovich I. 1982; The scavenging of superoxide radical by manganous complexes: in vitro . Arch Biochem Biophys 214:452–463
    [Google Scholar]
  4. Battistoni A., Pacello F., Folcarelli S. 7 other authors 2000; Increased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells. Infect Immun 68:30–37
    [Google Scholar]
  5. Beauchamp C., Fridovich I. 1971; Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
    [Google Scholar]
  6. Benov L. T., Fridovich I. 1994; Escherichia coli expresses a copper- and zinc-containing superoxide dismutase. J Biol Chem 269:25310–25314
    [Google Scholar]
  7. Beyer W. F., Fridovich I. 1989; Characterization of a superoxide dismutase mimic prepared from desferrioxamine and MnO2 . Arch Biochem Biophys 271:149–156
    [Google Scholar]
  8. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198
    [Google Scholar]
  9. Candeias L. P., Patel K. B., Stratford M. R. L., Wardman P. 1993; Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett 333:151–153
    [Google Scholar]
  10. Chan P. F., Foster S. J., Ingham E., Clements M. O. 1998; The Staphylococcus aureus alternative sigma factor σ B controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J Bacteriol 180:6082–6089
    [Google Scholar]
  11. Clements M. O., Watson S. P., Foster S. J. 1999; Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181:3898–3903
    [Google Scholar]
  12. Compan I., Touati D. 1993; Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696
    [Google Scholar]
  13. Darr D., Zarilla K. A., Fridovich I. 1987; A mimic of superoxide dismutase activity based upon desferrioxamine B and manganese(IV. Arch Biochem Biophys 258:351–355
    [Google Scholar]
  14. Dubrac S., Touati D. 2000; Fur positive regulation of iron superoxide dismutase in Escherichia coli : functional analysis of the sodB promoter. J Bacteriol 182:3802–3808
    [Google Scholar]
  15. Dubrac S., Touati D. 2002; Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli . Microbiology 148:147–156
    [Google Scholar]
  16. Dussurget O., Stewart G., Neyrolles O., Pescher P., Young D., Marshal G. 2001; Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infect Immun 69:529–533
    [Google Scholar]
  17. Faulkner K. M., Liochev S. I., Fridovich I. 1994; Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo . J Biol Chem 269:23471–23476
    [Google Scholar]
  18. Fee J. A. 1991; Regulation of sod genes in Escherichia coli : relevance to superoxide dismutase function. Mol Microbiol 5:2599–2610
    [Google Scholar]
  19. Gaballa A., Helmann J. D. 1998; Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis . J Bacteriol 180:5815–5821
    [Google Scholar]
  20. Giachino P., Engelmann S., Bischoff M. 2001; σ B activity depends on RsbU in Staphylococcus aureus . J Bacteriol 183:1843–1852
    [Google Scholar]
  21. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli . Proc Natl Acad Sci U S A 87:6181–6185
    [Google Scholar]
  22. Guerout-Fleury A. M., Shazand K., Frandsen N., Stragier P. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene 167:335–336
    [Google Scholar]
  23. Haber F., Weiss J. 1934; The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London Ser A 147:332–351
    [Google Scholar]
  24. Hantke K. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177
    [Google Scholar]
  25. Hassan H., Schrum L. W. 1994; Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli . FEMS Microbiol Rev 14:315–323
    [Google Scholar]
  26. Horsburgh M. J., Moir A. 1999; σ M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt. Mol Microbiol 32:41–50
    [Google Scholar]
  27. Horsburgh M. J., Clements M. O., Crossley H., Ingham E., Foster S. J. 2001a; PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus . Infect Immun 69:3744–3754
    [Google Scholar]
  28. Horsburgh M. J., Ingham E., Foster S. J. 2001b; In Staphylococcus aureus , Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183:468–475
    [Google Scholar]
  29. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. 2002a; σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain of Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467
    [Google Scholar]
  30. Horsburgh M. J., Wharton S. J., Cox A. G., Ingham E., Peacock S., Foster S. J. 2002b; MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286
    [Google Scholar]
  31. Horsburgh M. J., Wharton S. J., Karavolos M. H., Foster S. J. 2002c; Manganese: elemental defence for a life with oxygen?. Trends Microbiol 10:496–501
    [Google Scholar]
  32. Hurst J. K., Barrette W. C. Jr 1989; Leukocyte oxygen activations and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol 24:271–328
    [Google Scholar]
  33. Imlay J. A., Linn S. 1988; DNA damage and oxygen radical toxicity. Science 240:1302–1309
    [Google Scholar]
  34. Imlay K. R., Imlay J. A. 1996; Cloning and analysis of sodC , encoding the copper-zinc superoxide dismutase of Escherichia coli . J Bacteriol 178:2564–2571
    [Google Scholar]
  35. Inaoka T., Matsumura Y., Tsuchido T. 1998; Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis . J Bacteriol 180:3697–3703
    [Google Scholar]
  36. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis . J Bacteriol 181:1939–1943
    [Google Scholar]
  37. Kanafani H., Martin S. E. 1985; Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol 21:607–610
    [Google Scholar]
  38. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P. 1991; Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol 173:4646–4652
    [Google Scholar]
  39. Kim E.-J., Chung H.-J., Suh B., Roe J.-H. 1998; Transcriptional and post-transcriptional regulation by nickel of sodN gene encoding nickel-containing superoxide dismutase from Streptomyces coelicolor Muller. Mol Microbiol 27:187–195
    [Google Scholar]
  40. Kono Y., Takahashi M. A., Asada K. 1976; Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts. Arch Biochem Biophys 174:454–462
    [Google Scholar]
  41. Lindsay J. A., Foster S. J. 2001; zur : a Zn2+-responsive regulatory element of Staphylococcus aureus . Microbiology 147:1259–1266
    [Google Scholar]
  42. Mandell G. L. 1975; Catalase, superoxide dismutase, and virulence of Staphylococcus aureus . In vitro and in vivo studies with emphasis on staphylococcal–leukocyte interaction. J Clin Invest 55:561–566
    [Google Scholar]
  43. Marklund S., Marklund G. 1974; Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474
    [Google Scholar]
  44. Masse E., Gottesman S. 2002; A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc Natl Acad Sci U S A 99:4620–4625
    [Google Scholar]
  45. Miller R. A., Britigan B. E. 1995; The formation and biologic significance of phagocyte-derived oxidants. J Investig Med 43:39–49
    [Google Scholar]
  46. Miller R. A., Britigan B. E. 1997; Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18
    [Google Scholar]
  47. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol 204:587–636
    [Google Scholar]
  48. O'Halloran T. V. 1993; Transition metals in control of gene expression. Science 261:715–725
    [Google Scholar]
  49. Poyart C., Pellegrini E., Gaillot O., Boumaila C., Baptista M., Trieu-Cuot P. 2001; Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae . Infect Immun 69:5098–5106
    [Google Scholar]
  50. Pugh S. Y. R., DiGuiseppi J. L., Fridovich I. 1984; Induction of superoxide dismutases in Escherichia coli by manganese and iron. J Bacteriol 160:137–142
    [Google Scholar]
  51. Que Q., Helmann J. D. 2000; Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468
    [Google Scholar]
  52. Ramos C. L., Pou S., Britigan B. E., Cohen M. S., Rosen G. M. 1992; Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Schenk S., Ladagga R. A. 1992; Improved method for electroporation of Staphylococcus aureus . FEMS Microbiol Lett 73:133–138
    [Google Scholar]
  55. Schneider W. P., Ho S. K., Christine J., Yao M., Marra A., Hromockyj A. E. 2002; Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect Immun 70:1326–1333
    [Google Scholar]
  56. Tseng H.-J., Srikhanta Y., McEwan A. G., Jennings M. P. 2001; Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol Microbiol 40:1175–1186
    [Google Scholar]
  57. Valderas M. W., Hart M. E. 2001; Identification and characterization of a second superoxide dismutase gene ( sodM ) from Staphylococcus aureus . J Bacteriol 183:3399–3407
    [Google Scholar]
  58. Xiong A., Singh V. K., Cabrera G., Jayaswal R. K. 2000; Molecular characterization of the ferric-uptake regulator, fur , from Staphylococcus aureus . Microbiology 146:659–668
    [Google Scholar]
  59. Yesilkaya H., Kadioglu P., Gingles N., Alexander J. E., Mitchell T. J., Andrew P. W. 2000; Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae . Infect Immun 68:2819–2826
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26353-0
Loading
/content/journal/micro/10.1099/mic.0.26353-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error