1887

Abstract

strain 121 employs a fructosyltransferase (FTF) to synthesize a fructose polymer [a fructan of the levan type, with (2→6) linkages] from sucrose or raffinose. Purification of this FTF (a levansucrase), and identification of peptide amino acid sequences, allowed isolation of the first levansucrase gene (), encoding a protein (Lev) consisting of 804 amino acids. Lev showed highest similarity with an inulosucrase of 121 [Inu; producing an inulin polymer with (2→1)-linked fructosyl units] and with FTFs from streptococci. Expression of in resulted in an active FTF (LevΔ773His) that produced the same levan polymer [with only 2–3 % (2→1→6) branching points] as 121 cells grown on raffinose. The low degree of branching of the levan is very different from bacterial levans known up to now, such as that of , having up to 30 % branches. Although Lev is unusual in showing a higher hydrolysis than transferase activity, significant amounts of levan polymer are produced both and . Lev is strongly dependent on Ca ions for activity. Unique properties of Lev together with Inu are: (i) the presence of a C-terminal cell-wall-anchoring motif causing similar expression problems in , (ii) a relatively high optimum temperature for activity for FTF enzymes, and (iii) at 50 °C, kinetics that are best described by the Hill equation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26671-0
2004-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/3/mic1500621.html?itemId=/content/journal/micro/10.1099/mic.0.26671-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent B., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
  3. Blennow A., Mette Bay-Smidt A., Bauer R. 2001; Amylopectin aggregation as a function of starch phosphate content studied by size exclusion chromatography and on-line refractive index and light scattering. Int J Biol Macromol 28:409–420 [CrossRef]
    [Google Scholar]
  4. Chambert R., Petit-Glatron M. F. 1991; Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279:35–41
    [Google Scholar]
  5. Davidson B. E., Kordias N., Dobos M., Hillier A. J. 1996; Genomic organization of lactic acid bacteria. Antonie van Leeuwenhoek 70:161–183 [CrossRef]
    [Google Scholar]
  6. De Roos N. M., Katan M. B. 2000; Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am J Clin Nutr 71:405–411
    [Google Scholar]
  7. De Vuyst L., Degeest B. 1999; Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177 [CrossRef]
    [Google Scholar]
  8. Ebisu S., Kato K., Kotani S., Misaki A. 1975; Structural differences in fructans elaborated by Streptococcus mutans and Streptococcus salivarius. J Biochem 78:879–887
    [Google Scholar]
  9. Gibson G. R., Willis C. L., van Loo J. 1994; Non-digestible oligosaccharides and bifidobacteria – implications for health. Int Sugar J 96:381–387
    [Google Scholar]
  10. Gunasekaran P., Mukundan G., Kannan R., Velmurugan S., Ait-Abdelkader N., Alvarez-Macarie E., Baratti J. 1995; The sacB and sacC genes encoding levansucrase and sucrase form a gene cluster inZymomonas mobilis. Biotechnol Lett 6:635–642
    [Google Scholar]
  11. Hancock R. A., Marshall K., Weigel H. 1976; Structure of the levan elaborated by Streptococcus salivarius strain 51: an application of chemical-ionisation mass-spectrometry. Carbohydr Res 49:351–360 [CrossRef]
    [Google Scholar]
  12. Havenaar R., Huis in 't Veld J. H. J. 1992; Probiotics: a general view. In The Lactic Acid Bacteria in Health and Disease pp 209–224 Edited by Wood B. J. B. New York: Elsevier;
    [Google Scholar]
  13. Hernández L., Arrieta J., Menéndez C., Vazquez R., Coego A., Suarez V., Selman G., Petit-Glatron M. F., Chambert R. 1995; Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118
    [Google Scholar]
  14. Lindgren S. E., Dobrogosz W. J. 1990; Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 7:149–163
    [Google Scholar]
  15. Nagy I., Schoofs G., Compernolle F., Proost P., Vanderleyden J., De Mot R. 1995; Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687
    [Google Scholar]
  16. Nielsen H., Engelbrecht J., Brunak S., Von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  17. Oda M., Hasegawa H., Komatsu S., Kambe M., Tsuchiya F. 1983; Antitumour polysaccharide from Lactobacillus sp. Agric Biol Chem 47:1623–1625 [CrossRef]
    [Google Scholar]
  18. Olivares-Illana V., Wacher-Rodarte C., Le Borgne S., López-Munguía A. 2002; Characterization of a cell-associated inulosucrase from a novel source: a Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage from Mayan origin. J Ind Microbiol Biotechnol 28:112–117 [CrossRef]
    [Google Scholar]
  19. Olivares-Illana V., Lopez-Munguia A., Olvera C. 2003; Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase. J Bacteriol 185:3606–3612 [CrossRef]
    [Google Scholar]
  20. Pabst M. J., Cisar J. O., Trummel C. L. 1979; The cell wall-associated levansucrase of Actinomyces viscosus. Biochim Biophys Acta 566:274–282 [CrossRef]
    [Google Scholar]
  21. Perez-Oseguera M. A., Guereca L., Lopez-Munguia A. 1996; Properties of levansucrase from Bacillus circulans. Appl Microbiol Biotechnol 45:465–471
    [Google Scholar]
  22. Pouwels P. H., Leer R. J. 1993; Genetics of lactobacilli: plasmids and gene expression. Antonie van Leeuwenhoek 64:85–107
    [Google Scholar]
  23. Rathsam C., Jacques N. A. 1998; Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J Bacteriol 180:6400–6403
    [Google Scholar]
  24. Roberfroid M. R. 1993; Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33:103–148 [erratum in Crit Rev Food Sci Nutr 33, 553]
    [Google Scholar]
  25. Rosell K. G., Birkhed D. 1974; An inulin-like fructan produced by Streptococcus mutans strain JC2. Acta Chem Scand B28:589
    [Google Scholar]
  26. Schiffrin E. J., Rochat F., Link-Amster H., Aeschlimann J. M., Donnet-Hughes A. 1995; Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78:491–497 [CrossRef]
    [Google Scholar]
  27. Simms P. J., Boyko W. J., Edwards J. R. 1990; The structural analysis of a levan produced by Streptococcus salivarius SS2. Carbohydr Res 208:193–198 [CrossRef]
    [Google Scholar]
  28. Song D. D., Jacques N. A. 1999; Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem J 341:285–291 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Tieking M., Korakli M., Ehrmann M. A., Ganzle M. G., Vogel R. F. 2003; In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69:945–952 [CrossRef]
    [Google Scholar]
  31. Turquois T., Gloria H. 2000; Determination of the absolute molecular weight averages and molecular weight distributions of alginates used as ice cream stabilizers by using multiangle laser light scattering measurements. J Agric Food Chem 48:5455–5458 [CrossRef]
    [Google Scholar]
  32. van Geel-Schutten G. H., Faber E. J., Smit E., Bonting K., Smith M. R., Ten Brink B., Kamerling J. P., Vliegenthart J. F. G., Dijkhuizen L. 1999; Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl Environ Microbiol 65:3008–3014
    [Google Scholar]
  33. van Hijum S. A. F. T., Bonting K., van der Maarel M. J. E. C., Dijkhuizen L. 2001; Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205:323–328 [CrossRef]
    [Google Scholar]
  34. van Hijum S. A. F. T., van Geel-Schutten G. H., Rahaoui H., van der Maarel M. J., Dijkhuizen L. 2002; Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398 [CrossRef]
    [Google Scholar]
  35. van Hijum S. A. F. T., van der Maarel M. J., Dijkhuizen L. 2003; Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534:207–210 [CrossRef]
    [Google Scholar]
  36. Verhasselt P., Poncelet F., Vanderleyden J., Vits K., van Gool A. 1989; Cloning and expression of a Clostridium acetobutylicum alpha-amylase gene in Escherichia coli. FEMS Microbiol Lett 50:135–140
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26671-0
Loading
/content/journal/micro/10.1099/mic.0.26671-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error