1887

Abstract

Lysylphosphatidylglycerol (LPG) is a basic phospholipid in which -lysine from lysyl-tRNA is transferred to phosphatidylglycerol (PG). This study examined whether the S gene encodes LPG synthetase. A crude membrane fraction prepared from wild-type cells had LPG synthetase activity that depended on PG and lysyl-tRNA, whereas the membrane fraction from an deletion mutant did not. When MprF protein was trans-expressed in wild-type cells, LPG synthesis was induced, whereas it was not observed in mutant cells in which the amount of PG is significantly reduced. In addition, LPG synthetase activity and a 93 kDa protein whose molecular size corresponded to that of MprF protein were co-induced in the crude membrane fraction prepared from cells expressing MprF protein. The values of the LPG synthetase activity for PG and for lysyl-tRNA were 56 μM and 6·9 μM, respectively, consistent with those of membranes. These results suggest that the MprF protein is LPG synthetase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26706-0
2004-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500045.html?itemId=/content/journal/micro/10.1099/mic.0.26706-0&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  2. Castuma C. E., Crooke E., Kornberg A. 1993; Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J Biol Chem 268:24665–24668
    [Google Scholar]
  3. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127
    [Google Scholar]
  4. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  5. Houtsmuller U. M. T., van Deenen L. L. M. 1965; On the amino acid esters of phosphatidyl glycerol from bacteria. Biochim Biophys Acta 106:564–576 [CrossRef]
    [Google Scholar]
  6. Ichihashi N., Kurokawa K., Matsuo M., Kaito C., Sekimizu K. 2003; Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. J Biol Chem 278:28778–28786 [CrossRef]
    [Google Scholar]
  7. Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K. 1998; The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94:61–71 [CrossRef]
    [Google Scholar]
  8. Kenward M. A., Brown M. R., Fryer J. J. 1979; The influence of calcium or manganese on the resistance to EDTA, polymyxin B or cold shock, and the composition of Pseudomonas aeruginosa grown in glucose- or magnesium-depleted batch cultures. J Appl Bacteriol 47:489–503 [CrossRef]
    [Google Scholar]
  9. Kitchen J. L., Li Z., Crooke E. 1999; Electrostatic interactions during acidic phospholipid reactivation of DnaA protein, the Escherichia coli initiator of chromosomal replication. Biochemistry 38:6213–6221 [CrossRef]
    [Google Scholar]
  10. Kristian S. A., Durr M., Van Strijp J. A., Neumeister B., Peschel A. 2003; MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549 [CrossRef]
    [Google Scholar]
  11. Kurokawa K., Nishida S., Emoto A., Sekimizu K., Katayama T. 1999; Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J 18:6642–6652 [CrossRef]
    [Google Scholar]
  12. Lennarz W. J., Nesbitt J. A. 3rd, Reiss J. 1966; The participation of sRNA in the enzymatic synthesis of O-l-lysyl phosphatidylglycerol in Staphylococcus aureus. Proc Natl Acad Sci U S A 55:934–941 [CrossRef]
    [Google Scholar]
  13. Lennarz W. J., Bonsen P. P., van Deenen L. L. 1967; Substrate specificity of O-l-lysylphosphatidylglycerol synthetase.Enzymatic studies on the structure of O-l-lysylphosphatidylglycerol. . Biochemistry 6:2307–2312 [CrossRef]
    [Google Scholar]
  14. Miyazaki C., Kuroda M., Ohta A., Shibuya I. 1985; Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis. Proc Natl Acad Sci U S A 82:7530–7534 [CrossRef]
    [Google Scholar]
  15. Mizushima T., Ishikawa Y., Obana E., Hase M., Kubota T., Katayama T., Kunitake T., Watanabe E., Sekimizu K. 1996; Influence of cluster formation of acidic phospholipids on decrease in the affinity for ATP of DnaA protein. J Biol Chem 271:3633–3638 [CrossRef]
    [Google Scholar]
  16. Nesbitt J. A. 3rd, Lennarz W. J. 1968; Participation of aminoacyl transfer ribonucleic acid in aminoacyl phosphatidylglycerol synthesis. I. Specificity of lysyl phosphatidylglycerol synthetase. J Biol Chem 243:3088–3095
    [Google Scholar]
  17. Nishida S., Fujimitsu K., Sekimizu K., Ohmura T., Ueda T., Katayama T. 2002; A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidence from a mutant DnaA protein defective in regulatory ATP hydrolysisin vitro and in vivo. J Biol Chem 277:14986–14995 [CrossRef]
    [Google Scholar]
  18. Novick R. P., Ross H. F., Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. 1993; Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975
    [Google Scholar]
  19. Peschel A. 2002; How do bacteria resist human antimicrobial peptides?. Trends Microbiol 10:179–186 [CrossRef]
    [Google Scholar]
  20. Peschel A., Jack R. W., Otto M. & 9 other authors; 2001; Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076 [CrossRef]
    [Google Scholar]
  21. Ruzin A., Severin A., Moghazeh S. L., Etienne J., Bradford P. A., Projan S. J., Shlaes D. M. 2003; Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim Biophys Acta 1621:117–121 [CrossRef]
    [Google Scholar]
  22. Sekimizu K., Kornberg A. 1988; Cardiolipin activation of DnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263:7131–7135
    [Google Scholar]
  23. Sekimizu K., Bramhill D., Kornberg A. 1987; ATP activates DnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 50:259–265 [CrossRef]
    [Google Scholar]
  24. Staubitz P., Peschel A. 2002; MprF-mediated lysinylation of phospholipids in Bacillus subtilis – protection against bacteriocins in terrestrial habitats?. Microbiology 148:3331–3332
    [Google Scholar]
  25. Tomura A., Ishikawa T., Sagara Y., Miki T., Sekimizu K. 1993; Requirement of phosphatidylglycerol for flagellation of Escherichia coli. FEBS Lett 329:287–290 [CrossRef]
    [Google Scholar]
  26. von Ehrenstein G. 1967; Isolation of sRNA from intact Escherichia coli cells. Methods Enzymol 12:588–596
    [Google Scholar]
  27. White D., Frerman F. 1967; Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol 94:1854–1867
    [Google Scholar]
  28. Xia W., Dowhan W. 1995; In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication inEscherichia coli. Proc Natl Acad Sci U S A 92:783–787 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26706-0
Loading
/content/journal/micro/10.1099/mic.0.26706-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error