1887

Abstract

, a Gram-negative bacterium belonging to the clade of the family , forms a mutualistic association with the soil nematode . The nematode invades insects and releases into the haemolymph, where it participates in insect killing. To begin to understand the role of fimbriae in the unique life cycle of , the organization and expression of the fimbrial operon was analysed. The operon contained only five structural genes (), making it one of the smallest chaperone-usher fimbrial operons studied to date. Unlike the operon of , a site-specific recombinase was not linked to the operon. The intergenic region between the major fimbrial gene () and the usher gene () lacked a -like gene, but contained three tandem inverted repeat sequences located downstream of . A 940 nt -containing mRNA was the major transcript produced in cells growing on agar, while an polycistronic mRNA was produced at low levels. A canonical promoter, identified upstream of , was not subject to promoter inversion. Fimbriae were not produced in an -mutant strain, suggesting that the leucine-responsive regulatory protein, Lrp, plays a role in the regulation of the operon. These findings show that the genetic organization and regulation of the operon is in several respects distinct from other chaperone-usher fimbrial operons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26853-0
2004-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501439.html?itemId=/content/journal/micro/10.1099/mic.0.26853-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828
    [Google Scholar]
  2. Bäga M., Norgren M., Normark S. 1987; Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell 49:241–251 [CrossRef]
    [Google Scholar]
  3. Bäga M., Göransson M., Normark S., Uhlin B. E. 1988; Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell 52:197–206 [CrossRef]
    [Google Scholar]
  4. Bailey T., Elkan C. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology pp. 28–36 Menlo Park, California: AAAI Press;
    [Google Scholar]
  5. Binnington K. C., Brooks L. 1993; Fimbrial attachment of Xenorhabdus nematophilus to the intestine of Steinernema carpocapsae. In Nematodes and the Biological Control of Insect Pests pp. 147–155Edited by Bedding R. Akhurst R., Kaya H. Melbourne, Australia: CSIRO Publications;
    [Google Scholar]
  6. Blomfield I. C. 2001; The regulation of Pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol 45:1–49
    [Google Scholar]
  7. Connell H., Agace W., Klemm P., Schembri M., Mårild S., Svanborg C. 1996; Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93:9827–9832 [CrossRef]
    [Google Scholar]
  8. Forst S., Nealson K. 1996; Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43
    [Google Scholar]
  9. Forst S., Boylan B. 2002; Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila. Antonie van Leeuwenhoek 81:43–49 [CrossRef]
    [Google Scholar]
  10. Forst S., Clarke D. 2002; Bacteria-nematodes symbiosis. In Entomopathogenic Nematology pp. 57–77 Edited by Gaugler R. London: CABI Publishing;
    [Google Scholar]
  11. Forst S., Dowds B., Boemare N., Stackebrandt E. 1997; Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72 [CrossRef]
    [Google Scholar]
  12. Gally D. L., Bogan J. A., Eisenstein B. I., Blomfield I. C. 1993; Environmental regulation of the fim switch controlling type 1 fimbrial phase variation inEscherichia coli K-12: effects of temperature and media. J Bacteriol 175:6186–6193
    [Google Scholar]
  13. Girardeau J. P., Bertin Y., Callebaut I. 2000; Conserved structural features in Class I major fimbrial subunits (pilin) in gram-negative bacteria. Molecular basis of classification in seven subfamilies and identification of intrasubfamily sequence signature motifs which might be implicated in quaternary structure. J Mol Evol 50:424–442
    [Google Scholar]
  14. Hacker J., Morschhäuser J. 1994; S and F1C fimbriae. In Fimbriae: Adhesion, Genetics, Biogenesis and Vaccines pp. 27–36Edited by Klemm P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. He H. 2002 Functional analysis of the mannose resistant fimbrial operon, mrx, in Xenorhabdus nematophila PhD thesis, University of Wisconsin-Milwaukee;
  16. Hernday A., Krabbe M., Braaten B., Low D. 2002; Self-perpetuating epigenic pili switches in bacteria. Proc Natl Acad Sci U S A 99:16470–16476 [CrossRef]
    [Google Scholar]
  17. Heungens K., Cowles C. E., Goodrich-Blair H. 2002; Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol 45:1337–1353 [CrossRef]
    [Google Scholar]
  18. Kim D., Boylan B., George N., Forst S. 2003; Inactivation of ompR promotes precocious swarming andflhDC expression in Xenorhabdus nematophila. J Bacteriol 185:5290–5294 [CrossRef]
    [Google Scholar]
  19. Li X., Mobley H. L. T. 1998; MrpB functions as the terminator for the assembly of Proteus mirabilis mannose-resistant Proteus-like fimbriae. Infect Immun 66:1759–1763
    [Google Scholar]
  20. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L. T. 2001; Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20:4854–4862 [CrossRef]
    [Google Scholar]
  21. Low D., Braaten B., Woude M. V. D. 1996; Fimbriae. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 146–157Edited by Frederick C. N. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Meslet-Cladiere L. M., Pimenta A., Duchaud E., Holland I. B., Blight M. A. 2004; In vivo expression of mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. J Bacteriol 186:611–622 [CrossRef]
    [Google Scholar]
  23. Mol O., Oudega B. 1996; Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev 19:25–52 [CrossRef]
    [Google Scholar]
  24. Moureaux N., Karjalainen T., Givaudan A., Bourlioux P., Boemare N. 1995; Biochemical characterization and agglutinating properties of Xenorhabdus nematophilus F1 fimbriae. Appl Environ Microbiol 61:2707–2712
    [Google Scholar]
  25. Old D. C., Duguid J. P. 1970; Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 103:447–456
    [Google Scholar]
  26. Otto K., Silhavy T. 2002; Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99:2287–2292 [CrossRef]
    [Google Scholar]
  27. Prigent-Combaret C., Brombacher E., Vidal O., Ambert A., Lejeune P., Landini P., Dorel C. 2001; Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223 [CrossRef]
    [Google Scholar]
  28. Römling U., Bian Z., Hammer M., Sierralta W. D., Normark S. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  29. Soto G. E., Hultgren S. J. 1999; Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181:1059–1071
    [Google Scholar]
  30. Stabb E. V., Ruby E. G. 2003; Contribution of pilA to competitive colonization of the squidEuprymna scolopes by Vibrio fischeri. Appl Environ Microbiol 69:820–826 [CrossRef]
    [Google Scholar]
  31. Stentebjerg-Olesen B., Chakraborty T., Klemm P. 1999; Type 1 fimbriation and phase switching in a natural Escherichia coli fimB null strain, Nissle 1917. J Bacteriol 181:7470–7478
    [Google Scholar]
  32. Tinker J. K., Hancox L. S., Clegg S. 2001; FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar typhimurium. J Bacteriol 183:435–442 [CrossRef]
    [Google Scholar]
  33. Tullus K., Kuhn I., Orskov I., Orskov F., Mollby R. 1992; The importance of P and type 1 fimbriae for the persistence of Escherichia coli in the human gut. Epidemiol Infect 108:415–421 [CrossRef]
    [Google Scholar]
  34. Vivas E. I., Goodrich-Blair H. 2001; Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J Bacteriol 183:4687–4693 [CrossRef]
    [Google Scholar]
  35. Webster J. M., Chen G., Hu K., Li J. 2002; Bacterial metabolites. In Entomopathogenic Nematology pp. 99–114Edited by Gaugler R. London: CABI Publishing;
    [Google Scholar]
  36. Zhao H., Li X., Johnson D. E., Blomfield I., Mobley H. L. T. 1997; In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol Microbiol 23:1009–1019 [CrossRef]
    [Google Scholar]
  37. Zhou X., Kaya H., Heungens K., Goodrich-Blair H. 2002; Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Appl Environ Microbiol 68:6202–6209 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26853-0
Loading
/content/journal/micro/10.1099/mic.0.26853-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error