1887

Abstract

is an important pathogen in the initiation of dental caries as the bacterium remains metabolically active when the environment becomes acidic. The mechanisms underlying this ability to survive and proliferate at low pH remain an area of intense investigation. Differential two-dimensional electrophoretic proteome analysis of grown at steady state in continuous culture at pH 7·0 or pH 5·0 enabled the resolution of 199 cellular and extracellular protein spots with altered levels of expression. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 167 of these protein spots. Sixty-one were associated with stress-responsive pathways involved in DNA replication, transcription, translation, protein folding and proteolysis. The 61 protein spots represented isoforms or cleavage products of 30 different proteins, of which 25 were either upregulated or uniquely expressed during acid-tolerant growth at pH 5·0. Among the unique and upregulated proteins were five that have not been previously identified as being associated with acid tolerance in and/or which have not been studied in any detail in oral streptococci. These were the single-stranded DNA-binding protein, Ssb, the transcription elongation factor, GreA, the RNA exonuclease, polyribonucleotide nucleotidyltransferase (PnpA), and two proteinases, the ATP-binding subunit, ClpL, of the Clp family of proteinases and a proteinase encoded by the gene family with properties similar to the dipeptidase, PepD, of . The identification of these and other differentially expressed proteins associated with an acid-tolerant-growth phenotype provides new information on targets for mutagenic studies that will allow the future assessment of their physiological significance in the survival and proliferation of in low pH environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27008-0
2004-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501339.html?itemId=/content/journal/micro/10.1099/mic.0.27008-0&mimeType=html&fmt=ahah

References

  1. Adams P., Fowler R., Howell G., Kinsella N., Skipp P., Coote P., O'Connor C. D. 1999; Defining protease specificity with proteomics: a protease with a dibasic amino acid recognition motif is regulated by a two-component signal transduction system in Salmonella. Electrophoresis 20:2241–2247 [CrossRef]
    [Google Scholar]
  2. Agashe V. R., Hartl F.-U. 2000; Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol 11:15–25 [CrossRef]
    [Google Scholar]
  3. Ajdić D., McShan W. M., McLaughlin R. E.16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  4. Belli W. A., Marquis R. E. 1991; Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138
    [Google Scholar]
  5. Bjedov I., Tenaillon O., Gerard B., Souza V., Denamur E., Radman M., Taddei F., Matic I. 2003; Stress-induced mutagenesis in bacteria. Science 300:1404–1409 [CrossRef]
    [Google Scholar]
  6. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. 1994; The crystal structure of the bacterial chaperonin GroEL at 2·8 Å. Nature 371:578–586 [CrossRef]
    [Google Scholar]
  7. Bukau B., Horwich A. L. 1998; The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366 [CrossRef]
    [Google Scholar]
  8. Caldas T. D., El Yaagoubi A., Richarme G. 1998; Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482 [CrossRef]
    [Google Scholar]
  9. Caldas T., Laalami S., Richarme G. 2000; Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275:855–860 [CrossRef]
    [Google Scholar]
  10. Carlsson J., Elander B. 1973; Regulation of dextransucrase formation by Streptococcus sanguis. Caries Res 7:89–101 [CrossRef]
    [Google Scholar]
  11. Cooper G. M. 2000 The Cell: a Molecular Approach, 2nd edn. pp. 273–290 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Cowman R. A., Baron S. S. 1997; Pathway for uptake and degradation of X-prolyl tripeptides in Streptococcus mutans VA-29R and Streptococcus sanguis ATCC 10556. J Dent Res 76:1477–1484 [CrossRef]
    [Google Scholar]
  13. Curnow A. W., Hong K., Yuan R., Kim S., Martins O., Winkler W., Henkin T. M., Soll D. 1997; Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A 94:11819–11826 [CrossRef]
    [Google Scholar]
  14. Dashper S. G., Reynolds E. C. 1992; pH regulation by Streptococcus mutans. J Dent Res 71:1159–1165 [CrossRef]
    [Google Scholar]
  15. Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., Bukau B. 1999; Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696 [CrossRef]
    [Google Scholar]
  16. Deutscher M. P., Reuven N. B. 1991; Enzymatic basis for hydrolytic versus phosphorolytic RNA degradation in Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 88:3277–3280 [CrossRef]
    [Google Scholar]
  17. Donovan W. P., Kushner S. R. 1986; Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A 83:120–124 [CrossRef]
    [Google Scholar]
  18. Erie D. A. 2002; The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. Biochim Biophys Acta 1577224–239 [CrossRef]
    [Google Scholar]
  19. Fayet O., Ziegelhoffer T., Georgopoulos C. 1989; The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385
    [Google Scholar]
  20. Fish R. N., Kane C. M. 2002; Promoting elongation with transcript cleavage stimulatory factors. Biochim Biophys Acta 1577287–307 [CrossRef]
    [Google Scholar]
  21. Gottesman S., Wickner S., Maurizi M. R. 1997; Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823 [CrossRef]
    [Google Scholar]
  22. Gutierrez J. A., Crowley P. J., Brown D. P., Hillman J. D., Youngman P., Bleiweis A. S. 1996; Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol 178:4166–4175
    [Google Scholar]
  23. Gutierrez J. A., Crowley P. J., Cvitkovitch D. G., Brady L. J., Hamilton I. R., Hillman J. D., Bleiweis A. S. 1999; Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145:357–366 [CrossRef]
    [Google Scholar]
  24. Hahn K., Faustoferri R. C., Quivey Jr R. G. 1999; Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol Microbiol 31:1489–1498 [CrossRef]
    [Google Scholar]
  25. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384
    [Google Scholar]
  26. Hamel J., Martin D., Brodeur B. B. 1997; Heat shock response of Streptococcus pneumoniae: identification of immunoreactive stress proteins. Microb Pathog 23:11–21 [CrossRef]
    [Google Scholar]
  27. Hamilton I. R., Buckley N. D. 1991; Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol Immun 6:65–71 [CrossRef]
    [Google Scholar]
  28. Hamilton I. R., Svensäter G. 1998; Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock. Oral Microbiol Immunol 13:292–300 [CrossRef]
    [Google Scholar]
  29. Hanna M. N., Ferguson R. J., Li Y. H., Cvitkovitch D. G. 2001; uvrA is an acid-inducible gene involved in the adaptive response to low pH inStreptococcus mutans. J Bacteriol 183:5964–5973 [CrossRef]
    [Google Scholar]
  30. Harpel M. R., Horiuchi K. Y., Luo Y., Shen L., Jiang W., Nelson D. J., Rogers K. C., Decicco C. P., Copeland R. A. 2002; Mutagenesis and mechanism-based inhibition of Streptococcus pyogenes Glu-tRNAGln amidotransferase implicate a serine-based glutaminase site. Biochemistry 41:6398–6407 [CrossRef]
    [Google Scholar]
  31. Harper D. S., Loesche W. J. 1984; Growth and acid tolerance of human dental plaque bacteria. Arch Oral Biol 10:843–848
    [Google Scholar]
  32. Hartmann E., Lingwood C. A., Reidl J. 2001; Heat-inducible surface stress protein (Hsp70) mediates sulfatide recognition of the respiratory pathogen Haemophilus influenzae. Infect Immun 69:3438–3441 [CrossRef]
    [Google Scholar]
  33. Hesterkamp T., Hauser S., Lutcke H., Bukau B. 1996; Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A 93:4437–4441 [CrossRef]
    [Google Scholar]
  34. Horst J. P., Wu T. H., Marinus M. G. 1999; Escherichia coli mutator genes. Trends Microbiol 7:29–36 [CrossRef]
    [Google Scholar]
  35. Hughes M. J., Moore J. C., Lane J. D.13 other authors 2002; Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259 [CrossRef]
    [Google Scholar]
  36. Jacques N. A., Hardy L., Knox K. W., Wicken A. J. 1979; Effect of growth conditions on the formation of extracellular lipoteichoic acid by Streptococcus mutans BHT. Infect Immun 25:75–84
    [Google Scholar]
  37. Jacques N. A., Morrey-Jones J. G., Walker G. J. 1985; Inducible and constitutive formation of fructanase in batch and continuous cultures of Streptococcus mutans. J Gen Microbiol 131:1625–1633
    [Google Scholar]
  38. Jayaraman G. C., Burne R. A. 1995; DnaK expression in response to heat shock of Streptococcus mutans. FEMS Microbiol Lett 131:255–261 [CrossRef]
    [Google Scholar]
  39. Jayaraman G. C., Penders J. E., Burne R. A. 1997; Transcriptional analysis of the Streptococcus mutans hrcA,grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol 25:329–341 [CrossRef]
    [Google Scholar]
  40. Jenal U., Hengge-Aronis R. 2003; Regulation by proteolysis in bacterial cells. Curr Opin Microbiol 6:163–172 [CrossRef]
    [Google Scholar]
  41. Katz F. S., Bryant F. R. 2003; Three-strand exchange by the Escherichia coli RecA protein using ITP as a nucleotide cofactor: mechanistic parallels with the ATP-dependent reaction of the RecA protein fromStreptococcus pneumoniae. J Biol Chem 278:35889–35896 [CrossRef]
    [Google Scholar]
  42. Koplove H. M., Cooney C. L. 1978; Acetate kinase production by Escherichia coli during steady-state and transient growth in continuous culture. J Bacteriol 134:992–1001
    [Google Scholar]
  43. Krab I. M., te Biesebeke R., Bernardi A., Parmeggiani A. 2001; Elongation factor Ts can act as a steric chaperone by increasing the solubility of nucleotide binding-impaired elongation factor-Tu. Biochemistry 40:8531–8535 [CrossRef]
    [Google Scholar]
  44. Kramer G., Rauch T., Rist W., Vorderwulbecke S., Patzelt H., Schulze-Specking A., Ban N., Deuerling E., Bukau B. 2002; L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–174 [CrossRef]
    [Google Scholar]
  45. Kremer B. H., van der Kraan M., Crowley P. J., Hamilton I. R., Brady L. J., Bleiweis A. S. 2001; Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J Bacteriol 183:2543–2552 [CrossRef]
    [Google Scholar]
  46. Kubota H., Hynes G., Willison K. 1995; The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem 230:3–16 [CrossRef]
    [Google Scholar]
  47. Kudlicki W., Coffman A., Kramer G., Hardesty B. 1997; Renaturation of rhodanese by translational elongation factor (EF) Tu. J Biol Chem 272:32206–32210 [CrossRef]
    [Google Scholar]
  48. Kwon H.-Y., Kim S.-W., Choi M.-H., Ogunniyi A. D., Paton J. C., Park S.-H., Pyo S.-N., Rhee D.-K. 2003; Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect Immun 71:3757–3765 [CrossRef]
    [Google Scholar]
  49. Lackey D., Krauss S. W., Linn S. 1985; Characterization of DNA polymerase I*, a form of DNA polymerase I found in Escherichia coli expressing SOS functions. J Biol Chem 260:3178–3184
    [Google Scholar]
  50. Lemos J. A. C., Burne R. A. 2002; Regulation and significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol 184:6357–6366 [CrossRef]
    [Google Scholar]
  51. Lemos J. A., Chen Y. Y., Burne R. A. 2001; Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance inStreptococcus mutans. J Bacteriol 183:6074–6084 [CrossRef]
    [Google Scholar]
  52. Len A. C. L., Cordwell S. J., Harty D. W. S., Jacques N. A. 2003; Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics 3:627–646 [CrossRef]
    [Google Scholar]
  53. Len A. C. L., Harty D. W. S., Jacques N. A. 2004; Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366 [CrossRef]
    [Google Scholar]
  54. Li Y. H., Lau P. C., Tang N., Svensäter G., Ellen R. P., Cvitkovitch D. G. 2002; Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol 184:6333–6342 [CrossRef]
    [Google Scholar]
  55. Lin B., Averett W. F., Novák J., Chatham W. W., Hollingshead S. K., Coligan J. E., Egan M. L., Pritchard D. G. 1996; Characterization of PepB, a Group B streptococcal oligopeptidase. Infect Immun 64:3401–3406
    [Google Scholar]
  56. Lindahl T., Nyberg B. 1972; Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618 [CrossRef]
    [Google Scholar]
  57. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  58. Malki A., Caldas T., Parmeggiani A., Kohiyama M., Richarme G. 2002; Specificity of elongation factor EF-TU for hydrophobic peptides. Biochem Biophys Res Commun 296:749–754 [CrossRef]
    [Google Scholar]
  59. Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. 1996; Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379:420–426 [CrossRef]
    [Google Scholar]
  60. Mohanty B. K., Kushner S. R. 2003; Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay. Mol Microbiol 50:645–658 [CrossRef]
    [Google Scholar]
  61. Nakasone K., Takaki Y., Takami H., Inoue A., Horikoshi K. 1998; Cloning and expression of the gene encoding RNA polymerase α subunit from alkaliphilic Bacillus sp. strain C-125. FEMS Microbiol Lett 168:269–276
    [Google Scholar]
  62. Opalka N., Chlenov M., Chacon P., Rice W. J., Wriggers W., Darst S. A. 2003; Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114:335–345 [CrossRef]
    [Google Scholar]
  63. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458 [CrossRef]
    [Google Scholar]
  64. Quivey R. G., Jr, Faustoferri R. C., Clancy K. A., Marquis R. E. 1995; Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett 126:257–261 [CrossRef]
    [Google Scholar]
  65. Quivey R. G., Jr, Kuhnert W. L., Hahn K. 2001; Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12:301–314 [CrossRef]
    [Google Scholar]
  66. Rudiger S., Germeroth L., Schneider-Mergener J., Bukau B. 1997; Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507 [CrossRef]
    [Google Scholar]
  67. Singh V. K., Jayaswal R. K., Wilkinson B. J. 2001; Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol Lett 199:79–84
    [Google Scholar]
  68. Sissons C. H., Cutress T. W., Hoffman M. P., Wakefield J. S. 1991; A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res 70:1409–1416 [CrossRef]
    [Google Scholar]
  69. Steffen S. E., Bryant F. R. 2000; Purification and characterization of the RecA protein from Streptococcus pneumoniae. Arch Biochem Biophys 15:303–309
    [Google Scholar]
  70. Steffen S. E., Katz F. S., Bryant F. R. 2002; Complete inhibition of Streptococcus pneumoniae RecA protein-catalyzed ATP hydrolysis by single-stranded DNA-binding protein (SSB protein. J Biol Chem 277:14493–14500 [CrossRef]
    [Google Scholar]
  71. Szabo A., Langer T., Schroder H., Flanagan J., Bukau B., Hartl F. U. 1994; The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 91:10345–10349 [CrossRef]
    [Google Scholar]
  72. Taddei F., Vulic M., Radman M., Matic I. 1997; Genetic variability and adaptation to stress. Experientia Supplementum 83:271–290
    [Google Scholar]
  73. Tao L., MacAlister T. J., Tanzer J. M. 1993; Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res 72:1032–1039 [CrossRef]
    [Google Scholar]
  74. Teter S. A., Houry W. A., Ang D., Tradler T., Rockabrand D., Fischer G., Blum P., Georgopoulos C., Hartl F. U. 1999; Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 197:755–765
    [Google Scholar]
  75. van Houte J. 1994; Role of micro-organisms in caries etiology. J Dent Res 73:672–681
    [Google Scholar]
  76. van Ruyven F. O., Lingstrom P., van Houte J., Kent R. 2000; Relationship among mutans streptococci, “low-pH” bacteria, and iodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res 79:778–784 [CrossRef]
    [Google Scholar]
  77. Vesanto E., Peltoniemi E. K., Purtsi T., Steele J. L., Palva A. 1996; Molecular characterization, over-expression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl Microbiol Biotechnol 45:638–645 [CrossRef]
    [Google Scholar]
  78. Volkert M. R., Landini P. 2001; Transcriptional responses to DNA damage. Curr Opin Microbiol 4:178–185 [CrossRef]
    [Google Scholar]
  79. Wandt G., Kubis S., Quinones A. 1997; Treatment with DNA-damaging agents increases expression of polA′–′lacZ gene fusions in Escherichia coli K-12. Mol Gen Genet 254:98–103 [CrossRef]
    [Google Scholar]
  80. Wang W., Bechhofer D. H. 1996; Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J Bacteriol 178:2375–2382
    [Google Scholar]
  81. Weissman J. S., Rye H. S., Fenton W. A., Beechem J. M., Horwich A. L. 1996; Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction. Cell 84:481–490 [CrossRef]
    [Google Scholar]
  82. Wilkins J. C., Homer K., Beighton D. 2001; Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol 67:3396–3405 [CrossRef]
    [Google Scholar]
  83. Wilkins J. C., Homer K. A., Beighton D. 2002; Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390 [CrossRef]
    [Google Scholar]
  84. Xu Z., Horwich A. L., Sigler P. B. 1997; The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388:741–750 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27008-0
Loading
/content/journal/micro/10.1099/mic.0.27008-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error