1887

Abstract

The recently published genome [ Paulsen, I. T., Banerjei, L., Myers, G. S. & 29 other authors (2003). , 2071–2074) ] was examined and 41 putative cell-wall-anchored proteins were identified. Seventeen of these proteins are predicted to contain tandemly repeated immunoglobulin-like folds characteristic of the structural organization of staphylococcal adhesins of the MSCRAMM (microbial surface component recognizing adhesive matrix molecules) type. Two of the nine proteins selected for further study appear to represent cell-wall-anchored enzymes. It is proposed that the remaining seven proteins constitute a family of structurally related proteins potentially interacting with proteins of the host. This family includes the previously identified collagen/laminin-binding MSCRAMM ACE [ Rich, R. L., Kreikemeyer, B., Owens, R. T., LaBrenz, S., Narayana, S. V., Weinstock, G. M., Murray, B. E. & Hook, M. (1999). , 26939–26945 ]. It is further demonstrated that genes encoding the seven putative MSCRAMMs are present in all strains tested and these proteins appear to be expressed during infection in humans, since sera from infected individuals contain antibodies reacting with recombinant versions of the enterococcal proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27074-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502069.html?itemId=/content/journal/micro/10.1099/mic.0.27074-0&mimeType=html&fmt=ahah

References

  1. Arduino R. C., Murray B. E., Rakita R. M. 1994; Roles of antibodies and complement in phagocytic killing of enterococci. Infect Immun 62:987–993
    [Google Scholar]
  2. Coque T. M., Patterson J. E., Steckelberg J. M., Murray B. E. 1995; Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229 [CrossRef]
    [Google Scholar]
  3. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penades J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  4. Deivanayagam C. C., Perkins S., Danthuluri S., Owens R. T., Bice T., Nanavathy T., Foster T. J., Hook M., Narayana S. V. 1999; Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 55:554–556 [CrossRef]
    [Google Scholar]
  5. Deivanayagam C. C., Rich R. L., Carson M., Owens R. T., Danthuluri S., Bice T., Hook M., Narayana S. V. 2000; Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure Fold Des 8:67–78 [CrossRef]
    [Google Scholar]
  6. Deivanayagam C. C., Wann E. R., Chen W., Carson M., Rajashankar K. R., Hook M., Narayana S. V. 2002; A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21:6660–6672 [CrossRef]
    [Google Scholar]
  7. Galli D., Lottspeich F., Wirth R. 1990; Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol Microbiol 4:895–904 [CrossRef]
    [Google Scholar]
  8. Galli D., Friesenegger A., Wirth R. 1992; Transcriptional control of sex-pheromone-inducible genes on plasmid pAD1 of Enterococcus faecalis and sequence analysis of a third structural gene for (pPD1-encoded) aggregation substance. Mol Microbiol 6:1297–1308 [CrossRef]
    [Google Scholar]
  9. Geourjon C., Deleage G. 1994; SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng 7:157–164 [CrossRef]
    [Google Scholar]
  10. Hall A. E., Domanski P. J., Patel P. R. & 7 other authors; 2003; Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect Immun 71:6864–6870 [CrossRef]
    [Google Scholar]
  11. Huycke M. M., Sahm D. F., Gilmore M. S. 1998; Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4:239–249 [CrossRef]
    [Google Scholar]
  12. Josefsson E., McCrea K. W., Ni Eidhin D., O'Connell D., Cox J., Hook M., Foster T. J. 1998; Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144:3387–3395 [CrossRef]
    [Google Scholar]
  13. Kelley L. A., MacCallum R. M., Sternberg M. J. E. 2000; Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520
    [Google Scholar]
  14. King R. D., Sternberg M. J. 1996; Identification and application of the concepts important for accurate and reliable secondary structure prediction. Protein Sci 5:2298–2310 [CrossRef]
    [Google Scholar]
  15. Mazmanian S. K., Ton-That H., Schneewind O. 2001; Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40:1049–1057 [CrossRef]
    [Google Scholar]
  16. McCrea K. W., Hartford O., Davis S., Eidhin D. N., Lina G., Speziale P., Foster T. J., Hook M. 2000; The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146:1535–1546
    [Google Scholar]
  17. Murray B. E. 1990; The life and times of the enterococcus. Clin Microbiol Rev 3:46–65
    [Google Scholar]
  18. Murray B. E., Weinstock G. M. 1999; Enterococci: new aspects of an old organism. Proc Assoc Am Physicians 111:328–334 [CrossRef]
    [Google Scholar]
  19. Nallapareddy S. R., Singh K. V., Duh R. W., Weinstock G. M., Murray B. E. 2000a; Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections. Infect Immun 68:5210–5217 [CrossRef]
    [Google Scholar]
  20. Nallapareddy S. R., Qin X., Weinstock G. M., Hook M., Murray B. E. 2000b; Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224 [CrossRef]
    [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. 1995; How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423 [CrossRef]
    [Google Scholar]
  22. Pallen M. J., Lam A. C., Antonio M., Dunbar K. 2001; An embarrassment of sortases – a richness of substrates?. Trends Microbiol 9:97–102 [CrossRef]
    [Google Scholar]
  23. Patti J. M., Hook M. 1994; Microbial adhesins recognizing extracellular matrix macromolecules. Curr Biol 6:752–758 [CrossRef]
    [Google Scholar]
  24. Paulsen I. T., Banerjei L., Myers G. S. & 29 other authors; 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074 [CrossRef]
    [Google Scholar]
  25. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Hook M. 2001; Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus. J Biol Chem 276:44721–44728 [CrossRef]
    [Google Scholar]
  26. Ponnuraj K., Xu Y., Moore D., Deivanayagam C. C., Boque L., Hook M., Narayana S. V. 2002; Crystallization and preliminary X-ray crystallographic analysis of Ace: a collagen-binding MSCRAMM from Enterococcus faecalis. Biochim Biophys Acta 1596173–176 [CrossRef]
    [Google Scholar]
  27. Ponnuraj K., Bowden G., Davis S., Gurusiddappa S., Moore D., Choe D., Xu Y., Hook M., Narayana S. V. 2003; A ‘dock, lock, and latch’ structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228 [CrossRef]
    [Google Scholar]
  28. Rich R. L., Kreikemeyer B., Owens R. T., LaBrenz S., Narayana S. V., Weinstock G. M., Murray B. E., Hook M. 1999; Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945 [CrossRef]
    [Google Scholar]
  29. Rost B., Sander C. 1993; Prediction of protein secondary structure at better than 70 % accuracy. J Mol Biol 232:584–599 [CrossRef]
    [Google Scholar]
  30. Rozdzinski E., Marre R., Susa M., Wirth R., Muscholl-Silberhorn A. 2001; Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb Pathog 30:211–220 [CrossRef]
    [Google Scholar]
  31. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. 1989; In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 33:1588–1591 [CrossRef]
    [Google Scholar]
  32. Schneewind O., Model P., Fischetti V. A. 1992; Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281 [CrossRef]
    [Google Scholar]
  33. Styriak I., Laukova A., Fallgren C., Wadstrom T. 1999; Binding of selected extracellular proteins to enterococci and Streptococcus bovis of animal origin. Curr Microbiol 39:327–335 [CrossRef]
    [Google Scholar]
  34. Styriak I., Laukova A., Ljungh A. 2002; Lectin-like binding and antibiotic sensitivity of enterococci from wild herbivores. Microbiol Res 157:293–303 [CrossRef]
    [Google Scholar]
  35. Symersky J., Patti J. M., Carson M. & 8 other authors; 1997; Structure of the collagen-binding domain from a Staphylococcus aureus adhesin. Nat Struct Biol 4:833–838 [CrossRef]
    [Google Scholar]
  36. Tailor S. A., Bailey E. M., Rybak M. J. 1993; Enterococcus, an emerging pathogen. Ann Pharmacother 27:1231–1242
    [Google Scholar]
  37. Vernachio J., Bayer A. S., Le T. & 7 other authors; 2003; Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob Agents Chemother 47:3400–3406 [CrossRef]
    [Google Scholar]
  38. Xiao J., Hook M., Weinstock G. M., Murray B. E. 1998; Conditional adherence of Enterococcus faecalis to extracellular matrix proteins. FEMS Immunol Med Microbiol 21:287–295 [CrossRef]
    [Google Scholar]
  39. Zareba T. W., Pascu C., Hryniewicz W., Wadstrom T. 1997; Binding of extracellular matrix proteins by enterococci. Curr Microbiol 34:6–11 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27074-0
Loading
/content/journal/micro/10.1099/mic.0.27074-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error