1887

Abstract

The synthesis of the compatible solute ectoine, mediated by the gene products, is the main mechanism used by the halophilic bacterium to cope with osmotic stress. Evidence was found that this process is regulated at the transcriptional level. S1 protection analyses performed with RNA extracted from cells grown in minimal medium at low (0·75 M NaCl) or high (2·5 M NaCl) osmolarity suggested the existence of four promoters upstream of . Two of these ( and ) might be recognized by the main vegetative sigma factor , and one () might be dependent on the general stress sigma factor . The S1 protection assays suggest that and may be osmoregulated promoters. In addition, an internal promoter showing sequences homologous to promoters dependent on the heat-shock sigma factor was found upstream of . Transcription from in followed a pattern typical of -dependent promoters, and was reduced by 50 % in an background. These data strongly suggest the involvement of the general stress sigma factor in transcription in . Expression of and trancriptional fusions was very high at low salinity, suggesting that may be a partially constitutive system. Both transcriptional fusions were induced during continuous growth at high temperature and their expression was reduced in cells grown in the presence of osmoprotectants (ectoine or glycine betaine) or the DNA gyrase inhibitor nalidixic acid. Moreover, expression was negatively modulated in cells grown with an excess of iron (FeCl). Measurement of ectoine levels in the presence of glycine betaine at different NaCl concentrations suggests that an additional post-transcriptional control may occur as well.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27122-0
2004-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1503051.html?itemId=/content/journal/micro/10.1099/mic.0.27122-0&mimeType=html&fmt=ahah

References

  1. Antón J., Roselló-Mora R., Rodríguez-Valera F., Amann R. 2000; Extremely halophiic bacteria in crystallizer ponds fom solar salterns. Appl Environ Microbiol 66:3052–3057 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A. 2001; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. R., Struhl K. 1989 Current Protocols in Molecular Biology New York: Greene Publishing Associates, John Wiley;
    [Google Scholar]
  4. Bestvater T., Galinski E. A. 2002; Investigation into a stress-inducible promoter region from Marinococcus halophilus using green fluorescent protein. Extremophiles 6:15–20 [CrossRef]
    [Google Scholar]
  5. Bremer E., Krämer R. 2000; Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial Stress Responses pp. 79–97 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J. 1996; Osmoprotectants in Halomonas elongata: high-affinity glycine betaine transport system and choline-glycine betaine pathway. J Bacteriol 178:7221–7226
    [Google Scholar]
  7. Cánovas D., Vargas C., Iglesias-Guerra F., Csonka L. N., Rhodes D., Ventosa A., Nieto J. J. 1997; Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J Biol Chem 272:25794–25801 [CrossRef]
    [Google Scholar]
  8. Cánovas D., Vargas C., Calderón M. I., Ventosa A., Nieto J. J. 1998a; Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst Appl Microbiol 21:487–497 [CrossRef]
    [Google Scholar]
  9. Cánovas D., Vargas C., Csonka L. N., Ventosa A., Nieto J. J. 1998b; Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64:4095–4097
    [Google Scholar]
  10. Cánovas D., Borges N., Vargas C., Ventosa A., Nieto J. J., Santos H. 1999; Role of N-γ-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65:3774–3779
    [Google Scholar]
  11. Cánovas D., Vargas C., Kneip S., Morón M. J., Ventosa A., Bremer E., Nieto J. J. 2000; Genes for the syntesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146:455–463
    [Google Scholar]
  12. Cánovas D., Fletcher S. A., Hayashi M., Csonka L. N. 2001; Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J Bacteriol 183:3365–3371 [CrossRef]
    [Google Scholar]
  13. Casabadan M. J. 1976; Transposon and fusion of lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555 [CrossRef]
    [Google Scholar]
  14. Corona-Izquierdo F. P., Membrillo-Hernández J. 2002; A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110 [CrossRef]
    [Google Scholar]
  15. Csonka L. N. 1982; A third l-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J Bacteriol 151:1433–1443
    [Google Scholar]
  16. Csonka L. N., Epstein W. 1996; Osmoregulation. In Escherichia coli and Salmonella: Cellular and Molecular Biology vol 1 pp. 1210–1223 Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Da Costa M. S., Santos H., Galinski E. A. 1998; An overview of the role and diversity of compatible solutes in bacteria and archaea. In Advances in Biochemical Engineering/Biotechnology vol 61 pp. 117–153 Edited by Scheper T. Berlin: Springer;
    [Google Scholar]
  18. Eshoo M. W. 1988; lac fusion analysis of the bet genes of Escherichia coli: regulation by osmolarity, temperature, oxygen, choline, and glycine betaine. J Bacteriol 170:5208–5215
    [Google Scholar]
  19. Galinski E. A. 1995; Osmoadaptation in bacteria. Adv Microb Physiology 37:272–328
    [Google Scholar]
  20. Galinski E. A., Trüper H. G. 1994; Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108 [CrossRef]
    [Google Scholar]
  21. Galinski E. A., Pfeiffer H. P., Trüper H. G. 1985; 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149:135–139 [CrossRef]
    [Google Scholar]
  22. Göller K., Ofer A., Galinski E. A. 1998; Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett 161:293–300 [CrossRef]
    [Google Scholar]
  23. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  24. Hengge-Aronis R. 1999; Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr Opin Microbiol 2:148–152 [CrossRef]
    [Google Scholar]
  25. Hengge-Aronis R. 2000; The general stress response in Escherichia coli. In Bacterial Stress Responses pp. 161–178 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Hengge-Aronis R. 2002a; Stationary phase gene regulation: what makes an Escherichia coli promoter σS-selective?. Curr Opin Microbiol 5:591–595 [CrossRef]
    [Google Scholar]
  27. Hengge-Aronis R. 2002b; Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395 [CrossRef]
    [Google Scholar]
  28. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boss W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary phase thermotolerance inEscherichia coli. J Bacteriol 173:7918–7924
    [Google Scholar]
  29. Hiraishi A., Ueda Y. 1994; Intragenic structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 44:15–23 [CrossRef]
    [Google Scholar]
  30. Kessler B., de Lorenzo V., Timmis K. N. 1992; A general system to integrate lacZ fusion into the chromosome of gram negative bacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233:293–301 [CrossRef]
    [Google Scholar]
  31. Kraegeloh A., Kunte H. J. 2002; Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 6:453–462 [CrossRef]
    [Google Scholar]
  32. Kuhlmann A. U., Bremer E. 2002; Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. J Bacteriol 68:772–783
    [Google Scholar]
  33. Lamark T., Kaasen I., Eshoo M. W., Falkenberg P., Mc-Dougall J., Strøm A. R. 1991; DNA sequence analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064 [CrossRef]
    [Google Scholar]
  34. Lippert K., Galinski E. A. 1992; Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65
    [Google Scholar]
  35. Louis P., Galinski E. A. 1997; Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143:1141–1149 [CrossRef]
    [Google Scholar]
  36. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Monsalve M., Mencía M., Rojo F., Salas M. 1995; Transcriptional regulation in bacteriophague π29: expression of the viral promoters throughout the infection cycle. Virology 207:23–31 [CrossRef]
    [Google Scholar]
  38. Nieto J. J., Fernández-Castillo R., Márquez M. C., Ventosa A., Quesada E., Ruiz-Berraquero F. 1989; Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 52:2385–2390
    [Google Scholar]
  39. Nissen H., Dundas I. D. 1984; Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 138:251–256 [CrossRef]
    [Google Scholar]
  40. O'Connor K., Csonka L. N. 2003; The high salt requirement of the moderate halophile Chromohalobacter salexigens DSM 3043 can be met not only by NaCl but by other ions. J Bacteriol 69:6334–6336
    [Google Scholar]
  41. Ono H., Sawada K., Khunajakr N., Tao T., Yamamoto M., Hiramoto M., Shinmyo A., Takano M., Murooka Y. 1999; Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181:91–99
    [Google Scholar]
  42. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348
    [Google Scholar]
  43. Peters P., Galinski E. A., Trüper H. G. 1990; The biosynthesis of ectoine. FEMS Microbiol Lett 71:157–162 [CrossRef]
    [Google Scholar]
  44. Poolman B., Glaasker E. 1998; Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407 [CrossRef]
    [Google Scholar]
  45. Sambrook J., Russell D. W. 2001 Molecular Cloning, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Severin J., Wohlfarth A., Galinski E. A. 1992; The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138:1629–1638 [CrossRef]
    [Google Scholar]
  47. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39 [CrossRef]
    [Google Scholar]
  48. Spiegelhalter F., Bremer E. 1998; Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress responsive promoters. Mol Microbiol 29:285–296 [CrossRef]
    [Google Scholar]
  49. Vargas C., Coronado M. J., Ventosa A., Nieto J. J. 1997; Host range, stability, and compatibility of broad host-range-plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intragenic and intergenic conjugation in moderate halophiles. Syst Appl Microbiol 20:173–181 [CrossRef]
    [Google Scholar]
  50. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544
    [Google Scholar]
  51. Vicente M., Chater K. F, de Lorenzo V. 1999; Bacterial transcription factors involved in global regulation. Mol Microbiol 33:8–17 [CrossRef]
    [Google Scholar]
  52. Vreeland R. H., Martin E. L. 1980; Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can J Microbiol 26:746–752 [CrossRef]
    [Google Scholar]
  53. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  54. Wang A.-Y., Cronan J. E. 1994; The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol Microbiol 11:1009–1017 [CrossRef]
    [Google Scholar]
  55. Wohlfarth A., Severin J., Galinski E. A. 1990; The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J Gen Microbiol 136:705–712 [CrossRef]
    [Google Scholar]
  56. Wood J. M., Bremer E., Csonka L. N., Krämer R., Poolman B., van der Heide T., Smith L. T. 2001; Osmosensing and osmoregulatory compatible solutes accumulation by bacteria. Comp Biochem Physiol 130:437–460 [CrossRef]
    [Google Scholar]
  57. Wösten M. M. S. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev 22:127–150 [CrossRef]
    [Google Scholar]
  58. Xu J. M., Johnson C. 1997; Activation of RpoS-dependent proP P2 transcription by the Fis protein in vitro. J Mol Biol 270:346–359 [CrossRef]
    [Google Scholar]
  59. Yim H. H., Brems R. L., Villarejo M. 1994; Molecular characterization of the promoter of osmY, an rpoS-dependent gene. J Bacteriol 176:100–107
    [Google Scholar]
  60. Yura T., Kanemori M., Morita M. T. 2000; The heat shock response: regulation and function. In Bacterial Stress Responses pp. 3–18 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27122-0
Loading
/content/journal/micro/10.1099/mic.0.27122-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error