1887

Abstract

is the aetiological agent of the deadly diarrhoeal disease cholera. In this study the 7·5 kb seventh pandemic island-II (VSP-II) that is unique to El Tor and O139 serogroups was analysed and it was found to be part of a novel 26·9 kb genomic island (GEI) encompassing VC0490–VC0516. The low-GC-content VSP-II encompassed 24 predicted ORFs, including DNA repair and methyl-accepting chemotaxis proteins, a group of hypothetical proteins and a bacteriophage-like integrase adjacent to a tRNA gene. Interestingly, ORFs VC0493–VC0498, VC0504–VC0510 and VC0516, which encodes an integrase, were homologous to strain YJ016 ORFs VV0510–VV0516, VV0518–VV0525 and VV0560, which also encodes an integrase, respectively. Some ORFs showed amino acid identities greater than 90 % between the two species in these regions. In strain YJ016, a 43·4 kb low-GC-content (43 %) GEI encompassing ORFs VV0509–VV0560 was identified and named island-I (VVI-I). The 52 ORFs of VVI-I included a phosphotransferase system gene cluster, genes required for sugar metabolism and transposase genes. There was synteny and homology between the 5′ region of VSP-II and the 5′ region of VVI-I; however, VVI-I contained an additional 31·5 kb of DNA between VV0526 and VV0560 in strain YJ016. A second strain, CMCP6, did not contain the 43·4 kb VVI-I; in this strain two ORFs were found between the 5′ and 3′ flanking genes VV10636 and VV10632, showing 100 % identity to VV0508 and VV0561, respectively, which flank VVI-I.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27172-0
2004-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/12/mic1504053.html?itemId=/content/journal/micro/10.1099/mic.0.27172-0&mimeType=html&fmt=ahah

References

  1. Albert, M. J., Siddique, A. K., Islam, M. S., Faruque, A. S., Ansaruzzaman, M., Faruque, S. M. & Sack, R. B.(1993). Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341, 704. [Google Scholar]
  2. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  3. Berche, P., Poyart, C., Abachin, E., Lelievre, H., Vandepitte, J., Dodin, A. & Fournier, J. M.(1994). The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis 170, 701–704.[CrossRef] [Google Scholar]
  4. Bik, E. M., Bunschoten, A. E., Gouw, R. D. & Mooi, F. R.(1995). Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14, 209–216. [Google Scholar]
  5. Bik, E., Gouw, R. & Mooi, F.(1996). DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol 34, 1453–1461. [Google Scholar]
  6. Chen, C. Y., Wu, K. M., Chang, Y. C. & 12 other authors(2003). Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13, 2577–2587.[CrossRef] [Google Scholar]
  7. Chiavelli, D. A., Marsh, J. W. & Taylor, R. K.(2001). The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67, 3220–3225.[CrossRef] [Google Scholar]
  8. Cholera Working Group(1993). Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae non-O139 Bengal. Lancet 342, 387–390.[CrossRef] [Google Scholar]
  9. DePaola, A., Capers, G. M. & Alexander, D.(1994). Densities of Vibrio vulnificus in the intestines of fish from the US gulf coast. Appl Environ Microbiol 60, 984–988. [Google Scholar]
  10. DePaola, A., Nordstrom, J. L., Dalsgaard, A., Forslund, A., Oliver, J., Bates, T., Bourdage, K. L. & Gulig, P. A.(2003). Analysis of Vibrio vulnificus from market oysters and septicemia cases for virulence markers. Appl Environ Microbiol 69, 4006–4011.[CrossRef] [Google Scholar]
  11. Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G. & Hacker, J.(2002). Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70, 6365–6372.[CrossRef] [Google Scholar]
  12. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J.(2004). Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2, 414–424.[CrossRef] [Google Scholar]
  13. Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F. & Mekalanos, J. J.(2002). Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99, 1556–1561.[CrossRef] [Google Scholar]
  14. Euzéby, J. P.(1997). List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47, 590–592 (http://www.bacterio.cict.fr/).[CrossRef] [Google Scholar]
  15. Farmer, J. J., III, Janda, J. M. & Birkhead, K.(2003).Vibrio. In Manual of Clinical Microbiology, 8th edn, pp. 706–718. Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, J. H. Jorgensen & R. H. Yolken. Washington, DC: American Society for Microbiology.
  16. Gutacker, M., Conza, N., Bengali, C., Pedroli, A., Bernasconi, M. V., Permin, L., Aznar, R. & Piffaretti, J. C.(2003). Population genetics of Vibrio vulnificus: identification of two divisions and a distinct eel-pathogenic clone. Appl Environ Microbiol 69, 3203–3212.[CrossRef] [Google Scholar]
  17. Hacker, J. & Kaper, J. B.(2000). Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54, 641–679.[CrossRef] [Google Scholar]
  18. Heidelberg, J. F., Eisen, J. A., Nelson, W. C. & 23 other authors(2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef] [Google Scholar]
  19. Hood, M. A. & Winter, P. A.(1997). Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol Ecol 22, 215–223.[CrossRef] [Google Scholar]
  20. Huq, A., West, P. A., Small, E. B., Huq, M. I. & Colwell, R. R.(1984). Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48, 420–424. [Google Scholar]
  21. Jermyn, W. S. & Boyd, E. F.(2002). Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148, 3681–3693. [Google Scholar]
  22. Jermyn, W. S. & Boyd, E. F.(2005). Molecular evolution of Vibrio pathogenicity island (VPI-2): mosaic structure among Vibrio cholerae and V. mimicus isolates. Microbiology 151 (in press). [Google Scholar]
  23. Kaper, J. B., Morris, J. G., Jr & Levine, M. M.(1995). Cholera. Clin Microbiol Rev 8, 48–86. [Google Scholar]
  24. Karaolis, D. K., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B. & Reeves, P. R.(1998). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95, 3134–3139.[CrossRef] [Google Scholar]
  25. Kaysner, C. A., Tamplin, M. L., Wekell, M. W., Scott, R. F. & Colburn, K. G.(1987). Virulent strains of Vibrio vulnificus isolated from estuaries of the United States west coast. Appl Environ Microbiol 53, 1349–1351. [Google Scholar]
  26. Kim, Y. R., Lee, S. E., Kim, C. M. & 9 other authors(2003). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71, 5461–5471.[CrossRef] [Google Scholar]
  27. Ko, K. S., Lee, H. K., Park, M. Y. & Kook, Y. H.(2003). Mosaic structure of pathogenicity islands in Legionella pneumophila. J Mol Evol 57, 63–72.[CrossRef] [Google Scholar]
  28. Kovach, M. E., Shaffer, M. D. & Peterson, K. M.(1996). A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142, 2165–2174.[CrossRef] [Google Scholar]
  29. Kwok, A. Y., Wilson, J. T., Coulthart, M., Ng, L. K., Mutharia, L. & Chow, A. W.(2002). Phylogenetic study and identification of human pathogenic Vibrio species based on partial hsp60 gene sequences. Can J Microbiol 48, 903–910.[CrossRef] [Google Scholar]
  30. Linkous, D. A. & Oliver, J. D.(1999). Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174, 207–214.[CrossRef] [Google Scholar]
  31. Makino, K., Oshima, K., Kurokawa, K. & 14 other authors(2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743–749.[CrossRef] [Google Scholar]
  32. Montanari, M. P., Pruzzo, C., Oane, L. & Colwell, R. R.(1999). Vibrios associated with plankton in a coastal zone of the Adriatic Sea (Italy). FEMS Microbiol Ecol 29, 241–247.[CrossRef] [Google Scholar]
  33. Oliver, J. D., Warner, R. A. & Cleland, D. R.(1982). Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. Appl Environ Microbiol 44, 1404–1414. [Google Scholar]
  34. O'Shea, Y. A., Reen, F. J., Quirke, A. M. & Boyd, E. F.(2004). Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates based on comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 42, 4657–4671.[CrossRef] [Google Scholar]
  35. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A. & Barrell, B.(2000). Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945.[CrossRef] [Google Scholar]
  36. Sears, C. L. & Kaper, J. L.(1996). Enteric bacterial toxins: mechanism of action and linkage to intestinal secretion. Microbiol Rev 60, 167–215. [Google Scholar]
  37. Stroeher, U. H., Parasivam, G., Dredge, B. K. & Manning, P. A.(1997). Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol 179, 2740–2747. [Google Scholar]
  38. Strom, M. S. & Paranjpye, R. N.(2000). Epidemiology and pathogenesis of Vibrio vulnificus. Microb Infect 2, 177–188.[CrossRef] [Google Scholar]
  39. Taylor, R. K., Miller, V. L., Furlong, D. B. & Mekalanos, J. J.(1987). Use of phoA gene fusions to identify a pilus colonization factor co-coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84, 2833–2837.[CrossRef] [Google Scholar]
  40. Trucksis, M., Michalski, J., Deng, Y. K. & Kaper, J. B.(1998). The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci U S A 95, 14464–14469.[CrossRef] [Google Scholar]
  41. Waldor, M. K. & Mekalanos, J. J.(1994). Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis 170, 278–283.[CrossRef] [Google Scholar]
  42. Waldor, M. K. & Mekalanos, J. J.(1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.[CrossRef] [Google Scholar]
  43. Welch, R. A., Burland, V., Plunkett, G., 3rd & 16 other authors(2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef] [Google Scholar]
  44. Zhang, R. & Zhang, C. T.(2004). A systematic method to identify genomic islands and its application in analyzing the genomes of Corynebacterium glutamicum and Vibrio vulnificus CMCP6 chromosome 1. Bioinformatics 20, 612–622.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27172-0
Loading
/content/journal/micro/10.1099/mic.0.27172-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error