1887

Abstract

In an acetate-fed anaerobic–aerobic membrane bioreactor, a deteriorated enhanced biological phosphorus removal (EBPR) community was developed (as determined based on the chemical profiles of organic substrate, soluble phosphate, and intracellular carbohydrate and polyhydroxyalkanote (PHA) concentrations). Microscopic observations revealed the dominance of tetrad-forming organisms (TFOs), of which the majority stained positively for PHA under anaerobic conditions. Fluorescence hybridization (FISH) confirmed that the (85·0±7·0 % of total cells) were the most dominant group. A 16S rRNA gene clone library specific for the indicated that most 16S rRNA gene clones (61 % of total clones) were closely affiliated with ‘’, forming a cluster within subgroup 1 of the . Combined PHA staining and FISH with specific probes designed for the members of the ‘’ cluster suggested diversity within this TFO cluster, and that these TFOs were newly identified glycogen-accumulating organisms in EBPR systems. However, these ‘’-related TFOs were only seen in low abundance in 12 different EBPR and non-EBPR systems, suggesting that they were not the key populations responsible for the deterioration of full-scale EBPR processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27291-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503741.html?itemId=/content/journal/micro/10.1099/mic.0.27291-0&mimeType=html&fmt=ahah

References

  1. Adam C., Gnirss R., Lesjean B., Buisson H., Kraume M. 2002; Enhanced biological phosphorus removal in membrane bioreactors. Water Sci Technol 46:4-5281–286
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  4. Bouchez T., Patureau D., Dabert P., Juretschko S., Dore J., Delgenes P., Moletta R., Wagner M. 2000; Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190 [CrossRef]
    [Google Scholar]
  5. Cech J. S., Hartman P. 1993; Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219–1225 [CrossRef]
    [Google Scholar]
  6. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L. 2002; Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364
    [Google Scholar]
  7. Daims H., Amann R., Schlerfer K. H., Wagner M, Brühl A. 1999; The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444 [CrossRef]
    [Google Scholar]
  8. Fuchs B. M., Wallner G., Beisker W., Schwippl I., Ludwig W., Amann R. 1998; Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982
    [Google Scholar]
  9. Gieseke A., Purkhold U., Wagner M., Amann R., Schramm A. 2001; Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362 [CrossRef]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hanada S., Liu W.-T., Shintani T., Kamagata Y., Nakamura K. 2002; Tetrasphaera elongate sp. nov., a polyphosphate-accumulating bacterium from activated sludge. Int J Syst Evol Microbiol 52:883–887 [CrossRef]
    [Google Scholar]
  12. Jenkins D., Richard M. G., Diagger G. T. 1993 Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd edn. Boca Raton, FL: Lewis Publishers;
    [Google Scholar]
  13. Kane M. D., Poulsen L. K., Stahl D. A. 1993; Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686
    [Google Scholar]
  14. Kong Y. H., Beer M., Seviour R. J., Lindrea K. C., Rees G. N. 2001; Structure and functional analysis of the microbial community in an aerobic : anaerobic sequencing batch reactor (SBR) with no phosphorus removal. Syst Appl Microbiol 24:597–609 [CrossRef]
    [Google Scholar]
  15. Kong Y. H., Beer M., Seviour R. J., Lindrea K. C., Rees G. N. 2002a; Functional analysis of microbial communities in sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios. Microbiology 148:2299–2307
    [Google Scholar]
  16. Kong Y. H., Ong S. L., Ng W. J., Liu W.-T. 2002b; Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic: aerobic activated sludge processes. Environ Microbiol 4:753–757 [CrossRef]
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I., Nei M. 2001; mega2: Molecular Evolutionary Genetics Analysis Software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  18. Levantesi C., Serafim L. S., Crocetti G. R., Lemos P. C., Rossetti S., Blackall L. L., Reis M. A. M., Tandoi V. 2002; Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorous removal reactor. Environ Microbiol 4:559–569 [CrossRef]
    [Google Scholar]
  19. Liu W.-T., Mino T., Nakamura K., Matsuo T. 1994; Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic–aerobic activated sludge with a minimized polyphosphate content. J Ferment Bioeng 77:535–540 [CrossRef]
    [Google Scholar]
  20. Liu W.-T., Mino T., Nakamura K., Matsuo T. 1996; Glycogen accumulating population and its anaerobic substrate uptake in anaerobic–aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82 [CrossRef]
    [Google Scholar]
  21. Liu W.-T., Marsh T. L., Cheng H., Forney L. J. 1997; Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of 16S ribosomal DNA. Appl Environ Microbiol 63:4516–4522
    [Google Scholar]
  22. Liu W.-T., Nielsen A. T., Wu J. H., Tsai C. S., Matsuo Y., Molin S. 2001; In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 30:110–122
    [Google Scholar]
  23. Liu W.-T., Hanada S., Marsh T. L., Kamagata Y., Nakamura K. 2002a; Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. Int J Syst Evolut Microbiol 52:1845–1949 [CrossRef]
    [Google Scholar]
  24. Liu W.-T., Huang C. H., Hu J. Y., Song L., Ong S. L., Ng W. J. 2002b; Denaturing gradient gel electrophoresis polymorphism for rapid 16S rDNA screening and microbial diversity study. J Biosci Bioeng 93:101–103 [CrossRef]
    [Google Scholar]
  25. Ludwig W., Strunk O., Westram R. 29 other authors 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  26. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  27. Manz W., Amann R. I., Ludwig W., Wagner M., Schleifer K. H. 1992; Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600 [CrossRef]
    [Google Scholar]
  28. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K. H. 1996; Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106 [CrossRef]
    [Google Scholar]
  29. Maszenan A. M., Seviour R. J., Patel B. K. C., Rees G. N., McDougall B. M. 1997; Amaricoccus gen. nov., a Gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass,and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov.. Int J Syst Bacteriol 47:727–734 [CrossRef]
    [Google Scholar]
  30. McMaholm K. D., Dojka M. A., Pace N. R., Jenkins D., Keasling J. D. 2002; Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl Environ Microbiol 68:4971–4978 [CrossRef]
    [Google Scholar]
  31. Neef A., Witzenberger R., Kämpfer P. 1999; Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267 [CrossRef]
    [Google Scholar]
  32. Nielsen A. T., Liu W.-T., Filipe C., Grady L., Molin S., Stahl D. A. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258
    [Google Scholar]
  33. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  34. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K. H. 1994; In situ probing of Gram-positive bacteria with high G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858 [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  36. Schmid M., Twachtmann U., Klein M., Strous M., Juretschko S., Jetten M. S. M., Metzger J. W., Schleifer K.-H., Wagner M. 2000; Molecular evidence for genus-level diversity of bacteria of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106 [CrossRef]
    [Google Scholar]
  37. Seviour R. J., Mino T., Onuki M. 2003; The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127 [CrossRef]
    [Google Scholar]
  38. Shintani T., Liu W.-T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  39. Stephenson T., Judd S., Jefferson B., Brindle K. 2000 Membrane Bioreactors for Wastewater Treatment London, UK: IWA Publishing;
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. G. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Tsai C. S., Liu W.-T. 2002; Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Sci Technol 46(1-2:179–184
    [Google Scholar]
  42. Urbain V., Mobarry B., de Silva V., Stahl D. A., Rittmann B. E., Manem J. 1998; Integration of performance, molecular biology and modeling to describe the activated sludge process. Water Sci Technol 37(4-5:223–229
    [Google Scholar]
  43. Wallner G., Amann R., Beisker W. 1993; Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for low cytometric identification of microorganisms. Cytometry 14:136–143 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27291-0
Loading
/content/journal/micro/10.1099/mic.0.27291-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error