1887

Abstract

The operon is essential for fruiting body formation, fibril (exopolysaccharide) production and social motility of . The locus contains a gene cluster homologous to chemotaxis genes such as (), (), (), () and (), as well as an unknown ORF called . This study used yeast two-hybrid analysis to investigate possible interactions between Dif proteins, and determined that DifA, C, D and E interact in a similar fashion to chemotaxis proteins of and . It also showed that DifF interacted with DifD, and that the novel protein DifB did not interact with Dif proteins. Furthermore, DifA–F proteins were used to determine other possible protein–protein interactions in the genomic library. The authors not only confirmed the specific interactions among known Dif proteins, but also discovered two novel interactions between DifE and Nla19, and DifB and YidC, providing some new information about the Dif signalling pathway. Based on these findings, a model for the Dif signalling pathway is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27743-0
2005-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/5/mic1511535.html?itemId=/content/journal/micro/10.1099/mic.0.27743-0&mimeType=html&fmt=ahah

References

  1. Ames P., Parkinson J. S. 1994; Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 176:6340–6348
    [Google Scholar]
  2. Black W. P., Yang Z. 2004; Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186:1001–1008 [CrossRef]
    [Google Scholar]
  3. Blackhart B. D., Zusman D. R. 1985; Cloning and complementation analysis of the “Frizzy” genes of Myxococcus xanthus. Mol Gen Genet 198:243–254 [CrossRef]
    [Google Scholar]
  4. Caberoy N. B., Welch R. D., Jakobsen J. S., Slater S. C., Garza A. G. 2003; Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 185:6083–6094 [CrossRef]
    [Google Scholar]
  5. Campos J. M., Geisselsoder J., Zusman D. R. 1978; Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119:167–178 [CrossRef]
    [Google Scholar]
  6. Dalbey R. E., Kuhn A. 2004; YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol 166:769–774 [CrossRef]
    [Google Scholar]
  7. Eisenbach M. 1996; Control of bacterial chemotaxis. Mol Microbiol 20:903–910 [CrossRef]
    [Google Scholar]
  8. Garrity L. F., Ordal G. W. 1995; Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol Ther 68:87–104 [CrossRef]
    [Google Scholar]
  9. Grebe T. W., Stock J. 1998; Bacterial chemotaxis: the five sensors of a bacterium. Curr Biol 8:R154–R157 [CrossRef]
    [Google Scholar]
  10. Helmann J. D., Marquez L. M., Chamberlin M. J. 1988; Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene. J Bacteriol 170:1568–1574
    [Google Scholar]
  11. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  12. Hodgkin J., Kaiser D. 1979a; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171:167–176 [CrossRef]
    [Google Scholar]
  13. Hodgkin J., Kaiser D. 1979b; Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171:177–191 [CrossRef]
    [Google Scholar]
  14. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
    [Google Scholar]
  15. Jiang F., Yi L., Moore M., Chen M., Rohl T., Van Wijk K. J., De Gier J. W., Henry R., Dalbey R. E. 2002; Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 277:19281–19288 [CrossRef]
    [Google Scholar]
  16. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76:5952–5956 [CrossRef]
    [Google Scholar]
  17. Kashefi K., Hartzell P. L. 1995; Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF defect. Mol Microbiol 15:483–494 [CrossRef]
    [Google Scholar]
  18. Kirby J. R., Zusman D. R. 2003; Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci U S A 100:2008–2013 [CrossRef]
    [Google Scholar]
  19. Lancero H., Brofft J. E., Downard J., Birren B. W., Nusbaum C., Naylor J., Shi W., Shimkets L. J. 2002; Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes. J Bacteriol 184:1462–1465 [CrossRef]
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Samuelson J. C., Chen M., Jiang F., Moller I., Wiedmann M., Kuhn A., Phillips G. J., Dalbey R. E. 2000; YidC mediates membrane protein insertion in bacteria. Nature 406:637–641 [CrossRef]
    [Google Scholar]
  22. Shi W., Zusman D. R. 1993; The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90:3378–3382 [CrossRef]
    [Google Scholar]
  23. Thomasson B., Link J., Stassinopoulos A. G., Burke N., Plamann L., Hartzell P. L. 2002; MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 46:1399–1413 [CrossRef]
    [Google Scholar]
  24. Ueki T., Inouye S., Inouye M. 1996; Positive–negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183:153–157 [CrossRef]
    [Google Scholar]
  25. Urbanus M. L., Froderberg L., Drew D., Bjork P., de Gier J. W., Brunner J., Oudega B., Luirink J. 2002; Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem 277:12718–12723 [CrossRef]
    [Google Scholar]
  26. Vlamakis H. C., Kirby J. R., Zusman D. R. 2004; The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol Microbiol 52:1799–1811 [CrossRef]
    [Google Scholar]
  27. Ward M. J., Zusman D. R. 1999; Motility in Myxococcus xanthus and its role in developmental aggregation. Curr Opin Microbiol 2:624–629 [CrossRef]
    [Google Scholar]
  28. Yang Z., Geng Y., Xu D., Kaplan H. B., Shi W. 1998; A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30:1123–1130 [CrossRef]
    [Google Scholar]
  29. Yang Z., Ma X., Tong L., Kaplan H. B., Shimkets L. J., Shi W. 2000; Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182:5793–5798 [CrossRef]
    [Google Scholar]
  30. Zusman D. R. 1982; “Frizzy” mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus. J Bacteriol 150:1430–1437
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27743-0
Loading
/content/journal/micro/10.1099/mic.0.27743-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error