1887

Abstract

The gene hierarchy directing biogenesis of peritrichous flagella on the surface of and other enterobacteria is controlled by the heterotetrameric master transcriptional regulator FlhDC. To assess the extent to which FlhDC directly activates promoters of a wider regulon, a computational screen of the genome was used to search for gene-proximal DNA sequences similar to the 42–44 bp inverted repeat FlhDC binding consensus. This identified the binding sequences upstream of all eight flagella class II operons, and also putative novel FlhDC binding sites in the promoter regions of 39 non-flagellar genes. Nine representative non-flagellar promoter regions were all bound by active reconstituted FlhDC over the range 38–356 nM, and of the nine corresponding chromosomal promoter– fusions, those of the four genes , , and showed up to 50-fold dependence on FlhDC . In comparison, four representative flagella class II promoters bound FlhDC in the range 12–43 nM and were upregulated 30- to 990-fold. The FlhDC-binding sites of the four regulated non-flagellar genes overlap by 1 or 2 bp the predicted −35 motif of the FlhDC-activated promoters, as is the case with FlhDC-dependent class II flagellar promoters. The data indicate a wider FlhDC regulon, in which non-flagellar genes are bound and activated directly, albeit less strongly, by the same mechanism as that regulating the flagella gene hierarchy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27879-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511779.html?itemId=/content/journal/micro/10.1099/mic.0.27879-0&mimeType=html&fmt=ahah

References

  1. Adler J., Templeton B. 1967; The effect of environmental conditions on the motility of Esherichia coli . J Gen Microbiol 46:175–184 [CrossRef]
    [Google Scholar]
  2. Allison C., Hughes C. 1991; Closely linked genetic loci required for swarm cell differentiation and multicellular migration by Proteus mirabilis. Mol Microbiol 5:1975–1982 [CrossRef]
    [Google Scholar]
  3. Allison C., Emody L., Coleman N., Hughes C. 1994; The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169:1155–1158 [CrossRef]
    [Google Scholar]
  4. Berg O. G., Von Hippel P. H. 1988; Selection of DNA binding sites by regulatory proteins. II. The binding specificiity of the cyclic AMP receptor protein to recognition sites. J Mol Biol 200:709–723 [CrossRef]
    [Google Scholar]
  5. Bustin M., Reeves R. 1996; High-mobility-group chromosomal proteins, architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54:35–100
    [Google Scholar]
  6. Cayuela M. L., Elias-Arnanz M., Penalver-Mellado M., Padmanabhan S., Murillo F. J. 2003; The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J Bacteriol 185:3527–3537 [CrossRef]
    [Google Scholar]
  7. Chadsey M. S., Karlinsey J. E., Hughes K. T. 1998; The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev 12:3123–3136 [CrossRef]
    [Google Scholar]
  8. Claret L., Hughes C. 2000a; Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. J Bacteriol 182:833–836 [CrossRef]
    [Google Scholar]
  9. Claret L., Hughes C. 2000b; Functions of the subunits in the FlhD2C2 transcriptional master regulator of bacterial flagellum biogenesis and swarming. J Mol Biol 303:467–478 [CrossRef]
    [Google Scholar]
  10. Claret L., Hughes C. 2002; Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. J Mol Biol 321:185–199 [CrossRef]
    [Google Scholar]
  11. Claret L., Rouviere-Yaniv J. 1996; Regulation of HU alpha and HU beta by CRP and FIS in Escherichia coli . J Mol Biol 263:126–139 [CrossRef]
    [Google Scholar]
  12. Dennis J. J., Zylstra G. J. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715
    [Google Scholar]
  13. Dufour A., Furness R. B., Hughes C. 1998; Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Mol Microbiol 29:741–751 [CrossRef]
    [Google Scholar]
  14. Fernandez de Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R. 2000; Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572
    [Google Scholar]
  15. Francez-Charlot A., Laugel B., Van Gemert A., Dubarry N., Wiorowski F., Castanie-Cornet M. P., Gutierrez C., Cam K. 2003; RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli . Mol Microbiol 49:823–832
    [Google Scholar]
  16. Fraser G. M., Claret L., Furness R., Gupta S., Hughes C. 2002; Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operon. Microbiology 148:2191–2201
    [Google Scholar]
  17. Furness R. B., Fraser G. M., Hay N. A., Hughes C. 1997; Negative feedback from a Proteus class II flagellum export defect to the flhDC master operon controlling cell division and flagellum assembly. J Bacteriol 179:5585–5588
    [Google Scholar]
  18. Givaudan A., Lanois A. 2000; flhDC, the flagellar master operon of Xenorhabdus nematophilus, requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol 182:107–115 [CrossRef]
    [Google Scholar]
  19. Givskov M., Eberl L., Christiansen G., Benedik M. J., Molin S. 1995; Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Mol Microbiol 15:445–454 [CrossRef]
    [Google Scholar]
  20. Gygi D., Rahman M. M., Lai H. C., Carlson R., Guard-Petter J., Hughes C. 1995; A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17:1167–1175 [CrossRef]
    [Google Scholar]
  21. Ide N., Ikebe T., Kutsukake K. 1999; Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella . Genes Genet Syst 74:113–116 [CrossRef]
    [Google Scholar]
  22. Kalir S., Alon U. 2004; Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117:713–720 [CrossRef]
    [Google Scholar]
  23. Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M. G., Alon U. 2001; Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–2083 [CrossRef]
    [Google Scholar]
  24. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R. 2004; Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930 [CrossRef]
    [Google Scholar]
  25. Kapatral V., Campbell J. W., Minnich S. A., Thomson N. R., Matsumura P., Pruss B. M. 2004; Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Microbiology 150:2289–2300 [CrossRef]
    [Google Scholar]
  26. Karlinsey J. E., Tanaka S., Bettenworth V., Yamaguchi S., Boos W., Aizawa S. I., Hughes K. T. 2000; Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231 [CrossRef]
    [Google Scholar]
  27. Kim D. J., Boylan B., George N., Forst S. 2003; Inactivation of ompR promotes precocious swarming andflhDC expression in Xenorhabdus nematophila . J Bacteriol 185:5290–5294 [CrossRef]
    [Google Scholar]
  28. Kutsukake K., Ide N. 1995; Transcriptional analysis of the flgK and fliD operons of Salmonella typhimurium which encode flagellar hook-associated proteins. Mol Gen Genet 247:275–281 [CrossRef]
    [Google Scholar]
  29. Kutsukake K., Ohya Y., Iino T. 1990; Transcriptional analysis of the flagellar regulon of Salmonella typhimurium . J Bacteriol 172:741–747
    [Google Scholar]
  30. Lewis L. K., Harlow G. R., Gregg-Jolly L. A., Mount D. W. 1994; Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli . J Mol Biol 241:507–523 [CrossRef]
    [Google Scholar]
  31. Liu X., Matsumura P. 1994; The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176:7345–7351
    [Google Scholar]
  32. Liu X., Matsumura P. 1996; Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol 21:613–620 [CrossRef]
    [Google Scholar]
  33. Liu X., Fujita N., Ishihama A., Matsumura P. 1995; The C-terminal region of the alpha subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. J Bacteriol 177:5186–5188
    [Google Scholar]
  34. Macnab R. M. 1996; Flagella and Motility. In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp 123–145 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbour, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Mizushima T., Tomura A., Shinpuku T., Miki T., Sekimizu K. 1994; Loss of flagellation in dnaA mutants of Escherichia coli . J Bacteriol 176:5544–5546
    [Google Scholar]
  37. Murray G. L., Attridge S. R., Morona R. 2003; Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47:1395–1406 [CrossRef]
    [Google Scholar]
  38. Ozenberger B. A., Nahlik M. S., McIntosh M. A. 1987; Genetic organization of multiple fep genes encoding ferric enterobactin transport functions inEscherichia coli . J Bacteriol 169:3638–3646
    [Google Scholar]
  39. Park K., Choi S., Ko M., Park C. 2001; Novel σF-dependent genes of Escherichia coli found using a specified promoter consensus. FEMS Microbiol Lett 202:243–250
    [Google Scholar]
  40. Powell B. S., Rivas M. P., Court D. L., Nakamura Y., Turnbough C. L. Jr 1994; Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22:5765–5766 [CrossRef]
    [Google Scholar]
  41. Prüss B. M., Liu X., Hendrickson W., Matsumura P. 2001; FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett 197:91–97 [CrossRef]
    [Google Scholar]
  42. Prüss B. M., Campbell J. W., Van Dyk T. K., Zhu C., Kogan Y., Matsumura P. 2003; FlhD/FlhC is a regulator of anaerobic respiration and the Entner–Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol 185:534–543 [CrossRef]
    [Google Scholar]
  43. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  44. Soutourina O. A., Bertin P. N. 2003; Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27:505–523 [CrossRef]
    [Google Scholar]
  45. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli, role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508
    [Google Scholar]
  46. Toguchi A., Siano M., Burkart M., Harshey R. M. 2000; Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321 [CrossRef]
    [Google Scholar]
  47. Tomoyasu T., Takaya A., Isogai E., Yamamoto T. 2003; Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Mol Microbiol 48:443–452 [CrossRef]
    [Google Scholar]
  48. Urbanowski M. L., Stauffer L. T., Stauffer G. V. 2000; The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems inEscherichia coli . Mol Microbiol 37:856–868 [CrossRef]
    [Google Scholar]
  49. Wang Q., Frye J. G., McClelland M., Harshey R. M. 2004; Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52:169–187 [CrossRef]
    [Google Scholar]
  50. Young G. M., Smith M. J., Minnich S. A., Miller V. L. 1999; The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 181:2823–2833
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27879-0
Loading
/content/journal/micro/10.1099/mic.0.27879-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error