1887

Abstract

Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with the specificity subunit of RNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonical DNA element located in the −10 region. However, instead of the DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts of with the −10 region. This type of activation, which is called ‘ appropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to force to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA with , and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region of , region 4, with the host −35 DNA element and with other subunits of polymerase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27972-0
2005-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/6/mic1511729.html?itemId=/content/journal/micro/10.1099/mic.0.27972-0&mimeType=html&fmt=ahah

References

  1. Adelman K., Orsini G., Kolb A., Graziani L., Brody E. N. 1997; The interaction between the AsiA protein of bacteriophage T4 and the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 272:27435–27443 [CrossRef]
    [Google Scholar]
  2. Albright S. R., Tjian R. 2000; TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242:1–13 [CrossRef]
    [Google Scholar]
  3. Barnard A., Wolfe A., Busby S. 2004; Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr Opin Microbiol 7:102–108 [CrossRef]
    [Google Scholar]
  4. Barne K. A., Bown J. A., Busby S. J., Minchin S. D. 1997; Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters. EMBO J 16:4034–4040 [CrossRef]
    [Google Scholar]
  5. Bown J. A., Barne K. A., Minchin S. D., Busby S. J. W. 1997; Extended −10 promoters. In Nucleic Acids and Molecular Biology Mechanisms of Transcription pp 41–52 Edited by Eckstein F., Lilley D. M. J. New York: Springer;
    [Google Scholar]
  6. Brody E., Rabussay D., Hall D. 1983; Regulation of transcription of prereplicative genes. In Bacteriophage T4 pp 174–183 Edited by Mathews C. K., Kutter E. M., Mosig G., Berget P. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Brody E. N., Kassavetis G. A., Ouhammouch M., Sanders G. M., Tinker R. L., Geiduschek E. P. 1995; Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. FEMS Microbiol Lett 128:1–8 [CrossRef]
    [Google Scholar]
  8. Campbell E. A., Muzzin O., Chlenov M., Sun J. L., Olson C. A., Weinman O., Trester-Zedlitz M. L., Darst S. A. 2002; Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9:527–539 [CrossRef]
    [Google Scholar]
  9. Carlson K., Raleigh A., Hattman S. others 1994; Restriction and modification. In Molecular Biology of Bacteriophage T4 pp 369–381 Edited by Karam J. D. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Chen B. S., Hampsey M. 2002; Transcription activation: unveiling the essential nature of TFIID. Curr Biol 12:620–622 [CrossRef]
    [Google Scholar]
  11. Cicero M. P., Alexander K. A., Kreuzer K. N. 1998; The MotA transcriptional activator of bacteriophage T4 binds to its specific DNA site as a monomer. Biochemistry 37:4977–4984 [CrossRef]
    [Google Scholar]
  12. Cicero M. P., Sharp M. M., Gross C. A., Kreuzer K. N. 2001; Substitutions in bacteriophage T4 AsiA and Escherichia coli sigma(70) that suppress T4 motA activation mutations. J Bacteriol 183:2289–2297 [CrossRef]
    [Google Scholar]
  13. Colland F., Orsini G., Brody E. N., Buc H., Kolb A. 1998; The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol Microbiol 27:819–829 [CrossRef]
    [Google Scholar]
  14. Deretic V., Konyecsni W. M. 1989; Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene,algQ. J Bacteriol 171:3680–3688
    [Google Scholar]
  15. Dove S. L., Hochschild A. 2001; Bacterial two-hybrid analysis of interactions between region 4 of the sigma(70) subunit of RNA polymerase and the transcriptional regulators Rsd from Escherichia coli and AlgQ from Pseudomonas aeruginosa. J Bacteriol 183:6413–6421 [CrossRef]
    [Google Scholar]
  16. Finnin M. S., Cicero M. P., Davies C., Porter S. J., White S. W., Kreuzer K. N. 1997; The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16:1992–2003 [CrossRef]
    [Google Scholar]
  17. Gardella T., Moyle H., Susskind M. M. 1989; A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J Mol Biol 206:579–590 [CrossRef]
    [Google Scholar]
  18. Gerber J. S., Hinton D. M. 1996; An N-terminal mutation in the bacteriophage T4 motA gene yields a protein that binds DNA but is defective for activation of transcription. J Bacteriol 178:6133–6139
    [Google Scholar]
  19. Gregory B. D., Nickels B. E., Garrity S. J. 7 other authors 2004; A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme. Proc Natl Acad Sci U S A 101:4554–4559 [CrossRef]
    [Google Scholar]
  20. Gregory B. D., Nickels B. E., Darst S. A., Hochschild A. 2005; An altered-specificity DNA-binding mutant of E. coliσ70 facilitates the analysis of σ70 function in vivo. Mol Microbiol in press
    [Google Scholar]
  21. Gruber T. M., Gross C. A. 2003; Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466 [CrossRef]
    [Google Scholar]
  22. Guild N., Gayle M., Sweeney R., Hollingsworth T., Modeer T., Gold L. 1988; Transcriptional activation of bacteriophage T4 middle promoters by the motA protein. J Mol Biol 199:241–258 [CrossRef]
    [Google Scholar]
  23. Hinton D. M. 1991; Transcription from a bacteriophage T4 middle promoter using T4 MotA protein and phage-modified RNA polymerase. J Biol Chem 266:18034–18044
    [Google Scholar]
  24. Hinton D. M., Vuthoori S. 2000; Efficient inhibition of Escherichia coli RNA polymerase by the bacteriophage T4 AsiA protein requires that AsiA binds first to free sigma70. J Mol Biol 304:731–739 [CrossRef]
    [Google Scholar]
  25. Hinton D. M., March-Amegadzie R., Gerber J. S., Sharma M. 1996a; Characterization of pre-transcription complexes made at a bacteriophage T4 middle promoter: involvement of the T4 MotA activator and the T4 AsiA protein, a sigma 70 binding protein, in the formation of the open complex. J Mol Biol 256:235–248 [CrossRef]
    [Google Scholar]
  26. Hinton D. M., March-Amegadzie R., Gerber J. S., Sharma M. 1996b; Bacteriophage T4 middle transcription system: T4-modified RNA polymerase; AsiA, a sigma 70 binding protein; and transcriptional activator MotA. Methods Enzymol 274:43–57
    [Google Scholar]
  27. Jishage M., Ishihama A. 1998; A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci U S A 95:4953–4958 [CrossRef]
    [Google Scholar]
  28. Jishage M., Dasgupta D., Ishihama A. 2001; Mapping of the Rsd contact site on the sigma 70 subunit of Escherichia coli RNA polymerase. J Bacteriol 183:2952–2956 [CrossRef]
    [Google Scholar]
  29. Keener J., Nomura M. 1993; Dominant lethal phenotype of a mutation in the −35 recognition region of Escherichia coli sigma 70. Proc Natl Acad Sci U S A 90:1751–1755 [CrossRef]
    [Google Scholar]
  30. Kolesky S. E., Ouhammouch M., Geiduschek E. P. 2002; The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J Mol Biol 321:767–784 [CrossRef]
    [Google Scholar]
  31. Kuznedelov K., Minakhin L., Niedziela-Majka A., Dove S. L., Rogulja D., Nickels B. E., Hochschild A., Heyduk T., Severinov K. 2002; A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 295:855–857 [CrossRef]
    [Google Scholar]
  32. Lambert L. J., Schirf V., Demeler B., Cadene M., Werner M. H. 2001; Flipping a genetic switch by subunit exchange. EMBO J 20:7149–7159 [CrossRef]
    [Google Scholar]
  33. Lambert L. J., Schirf V., Demeler B., Cadene M., Werner M. H. 2004a; Flipping a genetic switch by subunit exchange [correction]. EMBO J 23:3186 [CrossRef]
    [Google Scholar]
  34. Lambert L. J., Wei Y., Schirf V., Demeler B., Werner M. H. 2004b; T4 AsiA blocks DNA recognition by remodeling sigma(70) region 4. EMBO J 23:2952–2962 [CrossRef]
    [Google Scholar]
  35. Landini P., Busby S. J. 1999; The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at thealkA promoter. J Bacteriol 181:1524–1529
    [Google Scholar]
  36. Li N., Zhang W., White S. W., Kriwacki R. W. 2001; Solution structure of the transcriptional activation domain of the bacteriophage T4 protein, MotA. Biochemistry 40:4293–4302 [CrossRef]
    [Google Scholar]
  37. Li N., Sickmier E. A., Zhang R., Joachimiak A., White S. W. 2002; The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain: the ‘double wing’ motif. Mol Microbiol 43:1079–1088 [CrossRef]
    [Google Scholar]
  38. Lonetto M., Gribskov M., Gross C. A. 1992; The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849
    [Google Scholar]
  39. Lonetto M. A., Rhodius V., Lamberg K., Kiley P., Busby S., Gross C. 1998; Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J Mol Biol 284:1353–1365 [CrossRef]
    [Google Scholar]
  40. Marshall P., Sharma M., Hinton D. M. 1999; The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285:931–944 [CrossRef]
    [Google Scholar]
  41. Mattson T., Richardson J., Goodin D. 1974; Mutant of bacteriophage T4D affecting expression of many early genes. Nature 250:48–50 [CrossRef]
    [Google Scholar]
  42. Mattson T., Van Houwe G., Epstein R. H. 1978; Isolation and characterization of conditional lethal mutations in the mot gene of bacteriophage T4. J Mol Biol 126:551–570 [CrossRef]
    [Google Scholar]
  43. Mekler V., Kortkhonjia E., Mukhopadhyay J. 7 other authors 2002; Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108:599–614 [CrossRef]
    [Google Scholar]
  44. Miller E. S., Kutter E., Mosig G., Arisaka F., Kunisawa T., Ruger W. 2003; Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156 [CrossRef]
    [Google Scholar]
  45. Minakhin L., Camarero J. A., Holford M., Parker C., Muir T. W., Severinov K. 2001; Mapping the molecular interface between the sigma(70) subunit of E. coli RNA polymerase and T4 AsiA. J Mol Biol 306:631–642 [CrossRef]
    [Google Scholar]
  46. Minakhin L., Niedziela-Majka A., Kuznedelov K., Adelman K., Urbauer J. L., Heyduk T., Severinov K. 2003; Interaction of T4 AsiA with its target sites in the RNA polymerase sigma70 subunit leads to distinct and opposite effects on transcription. J Mol Biol 326:679–690 [CrossRef]
    [Google Scholar]
  47. Moarefi I., Jeruzalmi D., Turner J., O'Donnell M., Kuriyan J. 2000; Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage. J Mol Biol 296:1215–1223 [CrossRef]
    [Google Scholar]
  48. Murakami K. S., Masuda S., Campbell E. A., Muzzin O., Darst S. A. 2002a; Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296:1285–1290 [CrossRef]
    [Google Scholar]
  49. Murakami K. S., Masuda S., Darst S. A. 2002b; Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296:1280–1284 [CrossRef]
    [Google Scholar]
  50. Nechaev S., Kamali-Moghaddam M., Andre E., Leonetti J. P., Geiduschek E. P. 2004; The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 101:17365–17370 [CrossRef]
    [Google Scholar]
  51. Nickels B. E., Dove S. L., Murakami K. S., Darst S. A., Hochschild A. 2002; Protein-protein and protein-DNA interactions of sigma(70) region 4 involved in transcription activation by lambda cI. J Mol Biol 324:17–34 [CrossRef]
    [Google Scholar]
  52. Nickels B. E., Garrity S. J., Mekler V., Minakhin L., Severinov K., Ebright R. H., Hochschild A. 2005; The interaction between sigma(70) and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. Proc Natl Acad Sci U S A 102:4488–4493 [CrossRef]
    [Google Scholar]
  53. Nossal N. G. 1992; Protein-protein interactions at a DNA replication fork: bacteriophage T4 as a model. FASEB J 6:871–878
    [Google Scholar]
  54. Orsini G., Kolb A., Buc H. 2001; The Escherichia coli RNA polymerase anti-sigma 70 AsiA complex utilizes alpha-carboxyl-terminal domain upstream promoter contacts to transcribe from a −10/−35 promoter. J Biol Chem 276:19812–19819 [CrossRef]
    [Google Scholar]
  55. Orsini G., Igonet S., Pene C., Sclavi B., Buckle M., Uzan M., Kolb A. 2004; Phage T4 early promoters are resistant to inhibition by the anti-sigma factor AsiA. Mol Microbiol 52:1013–1028 [CrossRef]
    [Google Scholar]
  56. Ouhammouch M., Orsini G., Brody E. N. 1994; The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol 176:3956–3965
    [Google Scholar]
  57. Ouhammouch M., Adelman K., Harvey S. R., Orsini G., Brody E. N. 1995; Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc Natl Acad Sci U S A 92:1451–1455 [CrossRef]
    [Google Scholar]
  58. Paget M. S., Helmann J. D. 2003; The sigma70 family of sigma factors. Genome Biol 4:203 [View Article] [CrossRef]
    [Google Scholar]
  59. Pahari S., Chatterji D. 1997; Interaction of bacteriophage T4 AsiA protein with Escherichia coli sigma(70) and its variant. FEBS Lett 411:60–62 [CrossRef]
    [Google Scholar]
  60. Pal D., Vuthoori M., Pande S., Wheeler D., Hinton D. M. 2003; Analysis of regions within the bacteriophage T4 AsiA protein involved in its binding to the sigma(70) subunit of E. coli RNA polymerase and its role as a transcriptional inhibitor and co-activator. J Mol Biol 325:827–841 [CrossRef]
    [Google Scholar]
  61. Pande S., Makela A., Dove S. L., Nickels B. E., Hochschild A., Hinton D. M. 2002; The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma(70) subunit of Escherichia coli RNA polymerase. J Bacteriol 184:3957–3964 [CrossRef]
    [Google Scholar]
  62. Pene C., Uzan M. 2000; The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 35:1180–1191 [CrossRef]
    [Google Scholar]
  63. Pineda M., Gregory B. D., Szczypinski B., Baxter K. R., Hochschild A., Miller E. S., Hinton D. M. 2004; A family of anti-sigma70 proteins in T4-type phages and bacteria that are similar to AsiA, a transcription inhibitor and co-activator of bacteriophage T4. J Mol Biol 344:1183–1197 [CrossRef]
    [Google Scholar]
  64. Rhodius V. A., Busby S. J. 2000; Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J Mol Biol 299:311–324 [CrossRef]
    [Google Scholar]
  65. Ross W., Gourse R. L. 2005; Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci U S A 102:291–296 [CrossRef]
    [Google Scholar]
  66. Ross W., Ernst A., Gourse R. L. 2001; Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Genes Dev 15:491–506 [CrossRef]
    [Google Scholar]
  67. Sanderson A., Mitchell J. E., Minchin S. D., Busby S. J. 2003; Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended −10 elements at promoters. FEBS Lett 544:199–205 [CrossRef]
    [Google Scholar]
  68. Schmidt R. P., Kreuzer K. N. 1992; Purified MotA protein binds the −30 region of a bacteriophage T4 middle-mode promoter and activates transcription in vitro. J Biol Chem 267:11399–11407
    [Google Scholar]
  69. Severinov K., Muir T. W. 1998; Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem 273:16205–16209 [CrossRef]
    [Google Scholar]
  70. Severinova E., Severinov K., Fenyo D., Marr M., Brody E. N., Roberts J. W., Chait B. T., Darst S. A. 1996; Domain organization of the Escherichia coli RNA polymerase sigma 70 subunit. J Mol Biol 263:637–647 [CrossRef]
    [Google Scholar]
  71. Severinova E., Severinov K., Darst S. A. 1998; Inhibition of Escherichia coli RNA polymerase by bacteriophage T4 AsiA. J Mol Biol 279:9–18 [CrossRef]
    [Google Scholar]
  72. Sharma M., Marshall P., Hinton D. M. 1999a; Binding of the bacteriophage T4 transcriptional activator, MotA, to T4 middle promoter DNA: evidence for both major and minor groove contacts. J Mol Biol 290:905–915 [CrossRef]
    [Google Scholar]
  73. Sharma U. K., Ravishankar S., Shandil R. K., Praveen P. V., Balganesh T. S. 1999b; Study of the interaction between bacteriophage T4 asiA and Escherichia coli sigma(70), using the yeast two-hybrid system: neutralization ofasiA toxicity to E. coli cells by coexpression of a truncated sigma(70) fragment. J Bacteriol 181:5855–5859
    [Google Scholar]
  74. Sharma U. K., Praveen P. V., Balganesh T. S. 2002; Mutational analysis of bacteriophage T4 AsiA: involvement of N- and C-terminal regions in binding to sigma(70) of Escherichia coli in vivo. Gene 295:125–134 [CrossRef]
    [Google Scholar]
  75. Siegele D. A., Hu J. C., Walter W. A., Gross C. A. 1989; Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol 206:591–603 [CrossRef]
    [Google Scholar]
  76. Simeonov M. F., Bieber Urbauer R. J., Gilmore J. M., Adelman K., Brody E. N., Niedziela-Majka A., Minakhin L., Heyduk T., Urbauer J. L. 2003; Characterization of the interactions between the bacteriophage T4 AsiA protein and RNA polymerase. Biochemistry 42:7717–7726 [CrossRef]
    [Google Scholar]
  77. Sommer N., Salniene V., Gineikiene E., Nivinskas R., Ruger W. 2000; T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146:2643–2653
    [Google Scholar]
  78. Stevens A. 1972; New small polypeptides associated with DNA-dependent RNA polymerase of Escherichia coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A 69:603–607 [CrossRef]
    [Google Scholar]
  79. Stevens A. 1973; An inhibitor of host sigma-stimulated core enzyme activity that purifies with DNA-dependent RNA polymerase of E. coli following T4 phage infection. Biochem Biophys Res Commun 54:488–493 [CrossRef]
    [Google Scholar]
  80. Stevens A., Rhoton J. C. 1975; Characterization of an inhibitor causing potassium chloride sensitivity of an RNA polymerase from T4 phage-infected Escherichia coli. Biochemistry 14:5074–5079 [CrossRef]
    [Google Scholar]
  81. Stitt B., Hinton D. M. others 1994; Regulation of middle-mode transcription. In Molecular Biology of Bacteriophage T4 pp 142–160 Edited by Karam J. D. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  82. Tiemann B., Depping R., Gineikiene E., Kaliniene L., Nivinskas R., Ruger W. 2004; ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis. J Bacteriol 186:7262–7272 [CrossRef]
    [Google Scholar]
  83. Truncaite L., Zajanckauskaite A., Nivinskas R. 2002; Identification of two middle promoters upstream DNA ligase gene 30 of bacteriophage T4. J Mol Biol 317:179–190 [CrossRef]
    [Google Scholar]
  84. Truncaite L., Piesiniene L., Kolesinskiene G., Zajanckauskaite A., Driukas A., Klausa V., Nivinskas R. 2003; Twelve new MotA-dependent middle promoters of bacteriophage T4: consensus sequence revised. J Mol Biol 327:335–346 [CrossRef]
    [Google Scholar]
  85. Urbauer J. L., Adelman K., Urbauer R. J., Simeonov M. F., Gilmore J. M., Zolkiewski M., Brody E. N. 2001; Conserved regions 4.1 and 4.2 of sigma(70) constitute the recognition sites for the anti-sigma factor AsiA, and AsiA is a dimer free in solution. J Biol Chem 276:41128–41132 [CrossRef]
    [Google Scholar]
  86. Urbauer J. L., Simeonov M. F., Urbauer R. J., Adelman K., Gilmore J. M., Brody E. N. 2002; Solution structure and stability of the anti-sigma factor AsiA: implications for novel functions. Proc Natl Acad Sci U S A 99:1831–1835 [CrossRef]
    [Google Scholar]
  87. Vassylyev D. G., Sekine S., Laptenko O., Lee J., Vassylyeva M. N., Borukhov S., Yokoyama S. 2002; Crystal structure of a bacterial RNA polymerase holoenzyme at 2·6 Å resolution. Nature 417:712–719 [CrossRef]
    [Google Scholar]
  88. Waldburger C., Gardella T., Wong R., Susskind M. M. 1990; Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol 215:267–276 [CrossRef]
    [Google Scholar]
  89. Westblade L. F., Ilag L. L., Powell A. K., Kolb A., Robinson C. V., Busby S. J. 2004; Studies of the Escherichia coli Rsd-sigma70 complex. J Mol Biol 335:685–692 [CrossRef]
    [Google Scholar]
  90. Wilkens K., Ruger W. 1996; Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35:108–120 [CrossRef]
    [Google Scholar]
  91. Wilkens K., Tiemann B., Bazan F., Ruger W. 1997; ADP-ribosylation and early transcription regulation by bacteriophage T4. Adv Exp Med Biol 419:71–82
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27972-0
Loading
/content/journal/micro/10.1099/mic.0.27972-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error