1887

Abstract

It has been shown that cells with increased expression of the gene encoding exhibit enhanced cell lysis in early stationary phase. Further analysis of the lysis phenomenon was performed using a transient expression system of the gene and by DNA microarray. The former analysis revealed a -directed cell lysis, specific for early stationary phase but not for the exponential phase. The microarray analysis with RNAs from exponential and early stationary phase cells revealed that a large number of genes were up- or down-regulated when the gene was induced, and that several genes were induced in a phase-specific manner. The upregulated genes include many previously identified regulon genes, suggesting that a large number of genes are under the control of in this organism. These genes are involved in various cellular activities, including the cell envelope, cellular processes, regulatory functions, transport and translation. Genes that are presumably related to phase-specific cell lysis in are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28004-0
2005-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512721.html?itemId=/content/journal/micro/10.1099/mic.0.28004-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Apirakaramwong A., Fukuchi J., Kashiwagi K., Kakinuma Y., Ito E., Ishihama A., Igarashi K. 1998; Enhancement of cell death due to decrease in Mg2+ uptake by OmpC (cation-selective porin) deficiency in ribosome modulation factor-deficient mutant. Biochem Biophys Res Commun 251:482–487 [CrossRef]
    [Google Scholar]
  3. Cha M. K., Kim H. K., Kim I. H. 1996; Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J Bacteriol 178:5610–5614
    [Google Scholar]
  4. Claret L., Rouviere-Yaniv J. 1997; Variation in HU composition during growth of Escherichia coli : the heterodimer is required for long term survival. J Mol Biol 273:93–104 [CrossRef]
    [Google Scholar]
  5. Danese P. N., Silhavy T. J. 1997; The σ E and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli . Genes Dev 11:1183–1193 [CrossRef]
    [Google Scholar]
  6. Dartigalongue C., Loferer H., Raina S. 2001a; EcfE, a new essential inner membrane protease: its role in the regulation of heat shock response in Escherichia coli . EMBO J 20:5908–5918 [CrossRef]
    [Google Scholar]
  7. Dartigalongue C., Missiakas D., Raina S. 2001b; Characterization of the Escherichia coli σ E regulon. J Biol Chem 276:20866–20875 [CrossRef]
    [Google Scholar]
  8. De Las Peñas A., Connolly L., Gross C. A. 1997a; The σ E-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σ E. Mol Microbiol 24:373–385 [CrossRef]
    [Google Scholar]
  9. De Las Peñas A., Connolly L., Gross C. A. 1997b; σ E is an essential sigma factor in Escherichia coli . J Bacteriol 179:6862–6864
    [Google Scholar]
  10. Erickson J. W., Gross C. A. 1989; Identification of the σ E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3:1462–1471 [CrossRef]
    [Google Scholar]
  11. Gustavsson N., Diez A., Nystrom T. 2002; The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43:107–117 [CrossRef]
    [Google Scholar]
  12. Hiratsu K., Amemura M., Nashimoto H., Shinagawa H., Makino K. 1995; The rpoE gene of Escherichia coli , which encodes σ E, is essential for bacterial growth at high temperature. J Bacteriol 177:2918–2922
    [Google Scholar]
  13. Ishihama A. 1999; Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 4:135–143 [CrossRef]
    [Google Scholar]
  14. Izu H., Adachi O., Yamada M. 1997; Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli . J Mol Biol 267:778–793 [CrossRef]
    [Google Scholar]
  15. Kanehara K., Ito K., Akiyama Y. 2002; YaeL (EcfE) activates the σ E pathway of stress response through a site-2 cleavage of anti- σ E, RseA. Genes Dev 16:2147–2155 [CrossRef]
    [Google Scholar]
  16. Kanehisa M., Goto S., Kawashima S., Nakaya A. 2002; The kegg databases at Genome Net. Nucleic Acids Res 30:42–46 [CrossRef]
    [Google Scholar]
  17. Karp P. D., Riley M., Saier M., Paulsen I. T., Collado-Vides J., Paley S. M., Pellegrini-Toole A., Bonavides C., Gama-Castro S. 2002; The EcoCyc database. Nucleic Acids Res 30:56–58 [CrossRef]
    [Google Scholar]
  18. Klein G., Dartigalongue C., Raina S. 2003; Phosphorylation-mediated regulation of heat shock response in Escherichia coli . Mol Microbiol 48:269–285 [CrossRef]
    [Google Scholar]
  19. Koo M. S., Lee J. H., Rah S. Y., Yeo W. S., Lee J. W., Lee K. L., Koh Y. S., Kang S. O., Roe J. H. 2003; A reducing system of the superoxide sensor SoxR in Escherichia coli . EMBO J 22:2614–2622 [CrossRef]
    [Google Scholar]
  20. Lipinska B., Fayet O., Baird L., Georgopoulos C. 1989; Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584
    [Google Scholar]
  21. Lipinska B., Sharma S., Georgopoulos C. 1988; Sequence analysis and regulation of the htrA gene of Escherichia coli : a σ 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 16:10053–10067 [CrossRef]
    [Google Scholar]
  22. Mecsas J., Erickson J. W., Donohue T. J., Gross C. A, Rouviëre P. E. 1993; The activity of σ E, an Escherichia coli heat-inducible σ -factor, is modulated by expression of outer membrane proteins. Genes Dev 7:2618–2628 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1992 A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Missiakas D., Raina S. 1997; Protein misfolding in the cell envelope of Escherichia coli : new signaling pathways. Trends Biochem Sci 22:59–63 [CrossRef]
    [Google Scholar]
  25. Missiakas D., Mayer M. P., Lemaire M., Georgopoulos C., Raina S. 1997; Modulation of the Escherichia coli σ E (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24:355–371 [CrossRef]
    [Google Scholar]
  26. Nitta T., Nagamitsu H., Murata M., Izu H., Yamada M. 2000; Function of the σ E regulon in dead-cell lysis in stationary phase Escherichia coli . J Bacteriol 182:5231–5237 [CrossRef]
    [Google Scholar]
  27. Nogami T., Mizushima S. 1983; Outer membrane porins are important in maintenance of the surface of Escherichia coli cells. J Bacteriol 156:402–408
    [Google Scholar]
  28. Oshima T., Wada C., Kawagoe Y., Ara T., Maeda M., Masuda Y., Hiraga S., Mori H. 2002; Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli . Mol Microbiol 45:673–695 [CrossRef]
    [Google Scholar]
  29. Raina S., Missiakas D., Georgopoulos C. 1995; The rpoE gene encoding the σ E heat shock sigma factor of Escherichia coli . EMBO J 14:1043–1055
    [Google Scholar]
  30. Rezuchova B., Miticka H., Homerova D., Roberts M., Kormanec J. 2003; New members of the Escherichia coli σ E regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7 [CrossRef]
    [Google Scholar]
  31. Rouviëre P. E., De Las Peñas A., Mecas J., Lu C. Z., Rudd K. E., Gross C. A. 1995; rpoE , the gene encoding the second heat-shock sigma factor, σ E, in Escherichia coli . EMBO J 14:1032–1042
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Raj V. S., Full C., Yoshida M., Sakata K., Kashiwagi K., Ishihama A., Igarashi K. 2002; Decrease in cell viability in an RMF, σ 38, and OmpC triple mutant of Escherichia coli . Biochem Biophys Res Commun 29:252–257
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  35. Strauch K. L., Johnson K., Beckwith J. 1989; Characterization of degP , a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696
    [Google Scholar]
  36. Talukder A. A., Yanai S., Nitta T., Kato A., Yamada M. 1996; RpoS-dependent regulation of genes expressed at late stationary phase in Escherichia coli . FEBS Lett 386:177–180 [CrossRef]
    [Google Scholar]
  37. Tomoyasu T., Yamanaka K., Murata K., Suzuki T., Bouloc P., Kato A., Niki H., Hiraga S., Ogura T. 1993; Topology and subcellular localization of FtsH protein in Escherichia coli . J Bacteriol 175:1352–1357
    [Google Scholar]
  38. Tormo A., Almiron M., Kolter R. 1990; surA , an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172:4339–4347
    [Google Scholar]
  39. Tsunedomi R., Izu H., Kawai T., Matsushita K., Ferenci T., Yamada M. 2003; The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli . J Bacteriol 185:1783–1795 [CrossRef]
    [Google Scholar]
  40. Vlamis-Gardikas A., Potamitou A., Zarivach R., Hochman A., Holmgren A. 2002; Characterization of Escherichia coli null mutants for glutaredoxin 2. J Biol Chem 277:10861–10868 [CrossRef]
    [Google Scholar]
  41. Wada A. 1986; Analysis of Escherichia coli ribosomal proteins by an improved two-dimensional gel electrophoresis I. Detection of four new proteins. J Biochem 100:1583–1594
    [Google Scholar]
  42. Walsh N. P., Alba B. M., Bose B., Gross C. A., Sauer R. T. 2003; OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71 [CrossRef]
    [Google Scholar]
  43. Wang Q., Kaguni J. M. 1989; A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli . J Bacteriol 171:4248–4253
    [Google Scholar]
  44. Yamada M., Sumi K., Matsushita K., Adachi O., Yamada Y. 1993; Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. J Biol Chem 268:12812–12817
    [Google Scholar]
  45. Yamada M., Nitta T., Talukder A. A. 1999; Characterization of the ssnA gene, which is involved in the decline of cell viability at the beginning of stationary phase in Escherichia coli . J Bacteriol 181:1838–1846
    [Google Scholar]
  46. Young J., Hartl F. U. 2003; A stress sensor for the bacterial periplasm. Cell 113:1–4 [CrossRef]
    [Google Scholar]
  47. Zambrano M. M., Siegele D. A., Almiron M., Tormo A., Kolter R. 1993; Microbiol competition: Escherichia coli mutants that take over stationary phase culture. Science 259:1757–1760 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28004-0
Loading
/content/journal/micro/10.1099/mic.0.28004-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error