1887

Abstract

Biosynthesis of the red, tripyrrole antibiotic prodigiosin (Pig) by sp. ATCC 39006 (39006) is controlled by a complex regulatory network involving an -acyl homoserine lactone (-AHL) quorum-sensing system, at least two separate two-component signal transduction systems and a multitude of other regulators. In this study, a new transcriptional activator, PigT, and a physiological cue (gluconate), which are involved in an independent pathway controlling Pig biosynthesis, have been characterized. PigT, a GntR homologue, activates transcription of the biosynthetic operon in the absence of gluconate. However, addition of gluconate to the growth medium of 39006 repressed transcription of , via a PigT-dependent mechanism, resulting in a decrease in Pig production. Finally, expression of the transcript was shown to be maximal in exponential phase, preceding the onset of Pig production. This work expands our understanding of both the physiological and genetic factors that impinge on the biosynthesis of the secondary metabolite Pig in 39006.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28251-0
2005-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3833.html?itemId=/content/journal/micro/10.1099/mic.0.28251-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. 1981; Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Andro T., Chambost J. P., Kotoujansky A., Cattaneo J., Bertheau Y., Barras F., Van Gijsegem F., Coleno A. 1984; Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol 160:1199–1203
    [Google Scholar]
  4. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P., Stewart G. S., Williams P. 1992; N -(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora . Biochem J 288:997–1004
    [Google Scholar]
  5. Busby S., Ebright R. H. 1999; Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 [CrossRef]
    [Google Scholar]
  6. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)-and (3S,5R)-carbapenem-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun 21:1623–1625
    [Google Scholar]
  7. Cang S., Sanada M., Johdo O., Ohta S., Nagamatsu Y., Yoshimoto A. 2000; High production of prodigiosin by Serratia marcescens grown on ethanol. Biotechnology Lett 22:1761–1765 [CrossRef]
    [Google Scholar]
  8. Coulthurst S. J., Kurz C. L., Salmond G. P. 2004; luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology 150:1901–1910 [CrossRef]
    [Google Scholar]
  9. Coulthurst S. J., Barnard A. M., Salmond G. P. 2005; Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol 3:295–306 [CrossRef]
    [Google Scholar]
  10. Crow M. A. 2001; The genetic regulation of pigment and antibiotic biosynthesis in Serratia sp . 136 pp PhD thesis, University of Cambridge;
  11. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  12. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. 2005; Biosynthesis of tripyrrole and β -lactam secondary metabolites in Serratia : integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517 [CrossRef]
    [Google Scholar]
  13. Fukami-Kobayashi K., Tateno Y., Nishikawa K. 2003; Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Mol Biol Evol 20:267–277 [CrossRef]
    [Google Scholar]
  14. Giri A. V., Anandkumar N., Muthukumaran G., Pennathur G. 2004; A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4:11 [CrossRef]
    [Google Scholar]
  15. Grinter N. J. 1983; A broad-host-range cloning vector transposable to various replicons. Gene 21:133–143 [CrossRef]
    [Google Scholar]
  16. Harris A. K., Williamson N. R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H. T., Leeper F. J., Salmond G. P. 2004; The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150:3547–3560 [CrossRef]
    [Google Scholar]
  17. Herrero M., de Lorenzo V., Timmis K. N. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  18. Izu H., Adachi O., Yamada M. 1997; Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli . J Mol Biol 267:778–793 [CrossRef]
    [Google Scholar]
  19. Jacobs M. A., Alwood A., Thaipisuttikul I. 12 other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344 [CrossRef]
    [Google Scholar]
  20. Kaniga K., Delor I., Cornelis G. R. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene 109:137–141 [CrossRef]
    [Google Scholar]
  21. Lodge J., Fear J., Busby S., Gunasekaran P., Kamini N. R. 1992; Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett 74:271–276
    [Google Scholar]
  22. Manderville R. A. 2001; Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anti-Canc Agents 1:195–218 [CrossRef]
    [Google Scholar]
  23. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Peekhaus N., Conway T. 1998; Positive and negative transcriptional regulation of the Escherichia coli gluconate regulon gene gntT by GntR and the cyclic AMP (cAMP)-cAMP receptor protein complex. J Bacteriol 180:1777–1785
    [Google Scholar]
  25. Perez-Tomas R., Montaner B., Llagostera E., Soto-Cerrato V. 2003; The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol 66:1447–1452 [CrossRef]
    [Google Scholar]
  26. Porco A., Peekhaus N., Bausch C., Tong S., Isturiz T., Conway T. 1997; Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism. J Bacteriol 179:1584–1590
    [Google Scholar]
  27. Rjazantseva I. N., Andreeva I. N., Ogorodnikova T. I. 1994; Effect of various growth conditions on pigmentation of Serratia marcescens . Microbios 79:155–161
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Silverman M. P., Munoz E. F. 1973; Effect of iron and salt on prodigiosin synthesis in Serratia marcescens . J Bacteriol 114:999–1006
    [Google Scholar]
  30. Slater H., Crow M., Everson L., Salmond G. P. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320
    [Google Scholar]
  31. Sole M., Rius N., Loren J. G. 1997; The role of pH in the ‘glucose effect’ on prodigiosin production by non-proliferating cells of Serratia marcescens . Lett App Microbiol 25:81–84 [CrossRef]
    [Google Scholar]
  32. Sprusansky O., Zhou L., Jordan S., White J., Westpheling J. 2003; Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor . J Bacteriol 185:6147–6157 [CrossRef]
    [Google Scholar]
  33. Thomson N. R., Cox A., Bycroft B. W., Stewart G. S., Williams P., Salmond G. P. 1997; The rap and hor proteins of Erwinia , Serratia and Yersinia : a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol 26:531–544 [CrossRef]
    [Google Scholar]
  34. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. 2000; Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556
    [Google Scholar]
  35. Tong S., Porco A., Isturiz T., Conway T. 1996; Cloning and molecular genetic characterization of the Escherichia coli gntR , gntK , and gntU genes of GntI, the main system for gluconate metabolism. J Bacteriol 178:3260–3269
    [Google Scholar]
  36. Tsunedomi R., Izu H., Kawai T., Matsushita K., Ferenci T., Yamada M. 2003; The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli . J Bacteriol 185:1783–1795 [CrossRef]
    [Google Scholar]
  37. Williams R. P., Gott C. L., Qadri S. M. 1971a; Induction of pigmentation in nonproliferating cells of Serratia marcescens by addition of single amino acids. J Bacteriol 106:444–448
    [Google Scholar]
  38. Williams R. P., Gott C. L., Qadri S. M., Scott R. H. 1971b; Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens . J Bacteriol 106:438–443
    [Google Scholar]
  39. Williamson N. R., Simonsen H. T., Ahmed R. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. 2005; Biosynthesis of the red antibiotic, prodigiosin, in Serratia : identification of a novel 2-methyl-3- n -amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces . Mol Microbiol 56:971–989 [CrossRef]
    [Google Scholar]
  40. Witney F. R., Failla M. L., Weinberg E. D. 1977; Phosphate inhibition of secondary metabolism in Serratia marcescens . Appl Environ Microbiol 33:1042–1046
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28251-0
Loading
/content/journal/micro/10.1099/mic.0.28251-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error