1887

Abstract

The VirB proteins of assemble a T-pilus and a type IV secretion (T4S) apparatus for the transfer of DNA and proteins to plant cells. VirB6 is essential for DNA transfer and is a polytopic integral membrane protein with at least four membrane-spanning domains. VirB6 is postulated to function in T-pilus biogenesis and to be a component of the T4S apparatus. To identify amino acids required for VirB6 function, random mutations were introduced into , and mutants that failed to complement a deletion in in tumour formation assays were isolated. Twenty-one non-functional mutants were identified, eleven of which had a point mutation that led to a substitution in a single amino acid. Characterization of the mutants indicated that the N-terminal large periplasmic domain and the transmembrane domain TM3 are required for VirB6 function. TM3 has an unusual sequence feature in that it is rich in bulky hydrophobic amino acids. This feature is found conserved in the VirB6 family of proteins. Studies on the effect of VirB6 on other VirB proteins showed that the octopine Ti-plasmid VirB6, unlike its nopaline Ti-plasmid counterpart, does not affect accumulation of VirB3 and VirB5, but has a strong negative effect on the accumulation of the VirB7-VirB7 dimer. Using indirect immunofluorescence microscopy the authors recently demonstrated that VirB6 localizes to a cell pole in a VirB-dependent manner. Mutations identified in the present study did not affect polar localization of the protein or the formation of the VirB7-VirB7 dimer. A VirB6-GFP fusion that contained the entire VirB6 ORF did not localize to a cell pole in either the presence or the absence of the other VirB proteins. IMF studies using dual labelling demonstrated that VirB6 colocalizes with VirB3 and VirB9, and not with VirB4, VirB5 and VirB11. These results support the conclusion that VirB6 is a structural component of the T4S apparatus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28337-0
2005-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3483.html?itemId=/content/journal/micro/10.1099/mic.0.28337-0&mimeType=html&fmt=ahah

References

  1. Anderson L. B., Hertzel A. V., Das A. 1996; Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93:8889–8894 [CrossRef]
    [Google Scholar]
  2. Atmakuri K., Cascales E., Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211 [CrossRef]
    [Google Scholar]
  3. Baron C., Domke N., Beinhofer M., Hapfelmeier S. 2001; Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861 [CrossRef]
    [Google Scholar]
  4. Beaupre C. E., Bohne J., Dale E. M., Binns A. N. 1997; Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179:78–89
    [Google Scholar]
  5. Berger B., Christie P. 1994; Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660
    [Google Scholar]
  6. Cabezon E., Sastre J. I., de la Cruz F. 1997; Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254:400–406 [CrossRef]
    [Google Scholar]
  7. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nature Rev Microbiol 1:137–149 [CrossRef]
    [Google Scholar]
  8. Cascales E., Christie P. J. 2004; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173 [CrossRef]
    [Google Scholar]
  9. Chilton M. D., Currier T. C., Farrand S. K., Bendich A. J., Gordon M. P., Nester E. W. 1974; Agrobacterium tumefacien s DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71:3672–3676 [CrossRef]
    [Google Scholar]
  10. Cormack B., Valdivia R., Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP. Gene 173:33–38 [CrossRef]
    [Google Scholar]
  11. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  12. Covacci A., Telford J. L., Del Giudice G., Parsonnet J., Rappuoli R. 1999; Helicobacter pylori virulence and genetic geography. Science 284:1328–1333 [CrossRef]
    [Google Scholar]
  13. Das A., Xie Y.-H. 2000; Agrobacterium tumefaciens T-DNA transport pore proteins VirB8, VirB9 and VirB10 interact with one another. J Bacteriol 182:758–763 [CrossRef]
    [Google Scholar]
  14. Finberg K., Muth T., Young S., Maaarken J., Heitritter S., Binns A. N., Banta L. 1995; Interactions of VirB9, -10 and -11 with the membrane fraction of Agrobacterium tumefaciens : solubility studies provide evidence for tight associations. J Bacteriol 177:4881–4889
    [Google Scholar]
  15. Fullner K., Lara J. C., Nester E. 1996; Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:1107–1109 [CrossRef]
    [Google Scholar]
  16. Gitai Z., Dye N., Shapiro L. 2004; An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101:8643–8648 [CrossRef]
    [Google Scholar]
  17. Hapfelmeier S., Domke N., Zambryski P., Baron C. 2000; VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens . J Bacteriol 182:4505–4511 [CrossRef]
    [Google Scholar]
  18. Ho T. Q., Zhong Z., Aung S., Pogliano J. 2002; Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli . EMBO J 21:1864–1872 [CrossRef]
    [Google Scholar]
  19. Jakubowski S. J., Krishnamoorthy V., Christie P. J. 2003; Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185:2867–2878 [CrossRef]
    [Google Scholar]
  20. Jakubowski S., Krishnamoorthy V., Cascales E., Christie P. J. 2004; Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341:961–977 [CrossRef]
    [Google Scholar]
  21. Judd P. K., Kumar R. B., Das A. 2005a; The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124
    [Google Scholar]
  22. Judd P. K., Kumar R. B., Das A. 2005b; Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci U S A 102:11498–11503 [CrossRef]
    [Google Scholar]
  23. Kahng L. S., Shapiro L. 2003; Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti . J Bacteriol 185:3384–3391 [CrossRef]
    [Google Scholar]
  24. Krall L., Wiedemann U., Unsin G., Weiss S., Domke N., Baron C. 2002; Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens . Proc Natl Acad Sci U S A 99:11405–11410 [CrossRef]
    [Google Scholar]
  25. Kumar R. B., Das A. 2002; Functional domains and polar location of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43:1523–1532 [CrossRef]
    [Google Scholar]
  26. Kumar R., Xie Y.-H., Das A. 2000; Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol Microbiol 36:608–617
    [Google Scholar]
  27. Lachmanovich E., Shvartsman D. E., Malka Y., Botvin C., Henis Y. I., Weiss A. M. 2003; Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc 212:122–131 [CrossRef]
    [Google Scholar]
  28. Lai E. M., Kado C. I. 1998; Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens . J Bacteriol 180:2711–2717
    [Google Scholar]
  29. Mersereau M., Pazour G., Das A. 1990; Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90:149–151 [CrossRef]
    [Google Scholar]
  30. Mushegian A. R., Fullner K. J., Koonin E. V., Nester E. W. 1996; A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93:7321–7326 [CrossRef]
    [Google Scholar]
  31. Otten L., DeGreve H., Leemans J., Hain R., Hooykaas P., Schell J. 1984; Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 175:159–163
    [Google Scholar]
  32. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  33. Schmidt-Eisenlohr H., Domke N., Angerer C., Wanner G., Zambryski P., Baron C. 1999; Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens . J Bacteriol 181:7485–7492
    [Google Scholar]
  34. Vergunst A. C., Schrammeijer B., den Dulk-Ras A., de Vlaam C. M., Regensburg-Tuink T., Hooykaas P. J. 2000; VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982 [CrossRef]
    [Google Scholar]
  35. Vogel A., Das A. 1994; Mutational analysis of Agrobacterium tumefaciens pTiA6 vir D1: identification of functionally important residues. Mol Microbiol 12:811–817 [CrossRef]
    [Google Scholar]
  36. Ward J. E., Akiyoshi D. E., Regier D., Datta A., Gordon M. P., Nester E. 1988; Characterization of the virB operon from Agrobacterium tumefaciens Ti plasmid. J Biol Chem 263:5804–5814 correction published in J Biol Chem 265, 4768)
    [Google Scholar]
  37. Ward D. V., Draper O., Zupan J. R., Zambryski P. C. 2002; Peptide linkage mapping of the Agrobacterium tumefaciens vir -encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99:11493–11500 [CrossRef]
    [Google Scholar]
  38. Zupan J., Muth T., Draper O., Zambryski P. 2000; The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28337-0
Loading
/content/journal/micro/10.1099/mic.0.28337-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error