1887

Abstract

The gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1 plasmid R751, evidence is presented that and its downstream genes . and . were organized in a tricistronic operon (renamed here ), expressed from autoregulated , that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either or in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrA formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751Δ foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28495-0
2006-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1621.html?itemId=/content/journal/micro/10.1099/mic.0.28495-0&mimeType=html&fmt=ahah

References

  1. Arnold F. H. 1991; Metal-affinity separations: a new dimension in protein processing. Biotechnology 9:151–156 [CrossRef]
    [Google Scholar]
  2. Bignell C. R, Thomas C. M. 2001; The bacterial ParA-ParB partitioning proteins. J Biotechnol 91:1–34 [CrossRef]
    [Google Scholar]
  3. Bignell C. R, Haines A. S, Khare D, Thomas C. M. 1999; Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol 34:205–216 [CrossRef]
    [Google Scholar]
  4. Bingle L. E, Macartney D. P, Fantozzi A, Manzoor S. E, Thomas C. M. 2005; Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J Mol Biol 349:302–316 [CrossRef]
    [Google Scholar]
  5. Birnboim H. C, Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  6. Blakely G, May G, McCulloch R, Arciszewska L. K, Burke M, Lovett S. T, Sherratt D. J. 1993; Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75:351–361 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Burland V, Shao Y, Perna N. T, Plunkett G, Sofia H. J, Blattner F. R. 1998; The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157: H7. Nucleic Acids Res 26:4196–4204 [CrossRef]
    [Google Scholar]
  9. Chen D. C, Yang B. C, Kuo T. T. 1992; One-step transformation of yeast in stationary phase. Curr Genet 21:83–84 [CrossRef]
    [Google Scholar]
  10. Close S. M, Kado C. I. 1992; A gene near the plasmid pSa origin of replication encodes a nuclease. Mol Microbiol 6:521–527 [CrossRef]
    [Google Scholar]
  11. Easter C. L, Schwab H, Helinski D. R. 1998; Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. J Bacteriol 180:6023–6030
    [Google Scholar]
  12. El-Sayed A. K, Hothersall J, Thomas C. M. 2001; Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139
    [Google Scholar]
  13. Fields S, Song O. 1989; A novel genetic system to detect protein–protein interactions. Nature 340:245–246 [CrossRef]
    [Google Scholar]
  14. Gerdes K, Ayora S, Canosa I. & 10 other authors (2000a). Plasmid maintenance systems. In Horizontal Gene Pool. Bacterial Plasmids and Gene Spread pp  49–85 Edited by Thomas C. M. Amsterdam: Harwood Academic Publishers;
    [Google Scholar]
  15. Gerdes K, Moller-Jensen J, Bugge Jensen R. 2000b; Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466
    [Google Scholar]
  16. Haneda T, Okada N, Nakazawa N, Kawakami T, Danbara H. 2001; Complete DNA sequence and comparative analysis of the 50-kilobase virulence plasmid of Salmonella enterica serovar Choleraesuis . Infect Immun 69:2612–2620 [CrossRef]
    [Google Scholar]
  17. Hirano T. 1998; SMC protein complexes and higher-order chromosome dynamics. Curr Opin Cell Biol 10:317–322 [CrossRef]
    [Google Scholar]
  18. Hurme R, Namork E, Nurmiaho-Lassila E. L, Rhen M. 1994; Intermediate filament-like network formed in vitro by a bacterial coiled coil protein. J Biol Chem 269:10675–10682
    [Google Scholar]
  19. Hurme R, Berndt K. D, Namork E, Rhen M. 1996; DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain. J Biol Chem 271:12626–12631 [CrossRef]
    [Google Scholar]
  20. Hurme R, Berndt K. D, Normark S. J, Rhen M. 1997; A proteinaceous gene regulatory thermometer in Salmonella . Cell 90:55–64 [CrossRef]
    [Google Scholar]
  21. Jagura-Burdzy G, Thomas C. M. 1992; kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. J Mol Biol 225:651–660 [CrossRef]
    [Google Scholar]
  22. Jagura-Burdzy G, Thomas C. M. 1994; KorA protein of promiscuous plasmid RK2 controls a transcriptional switch between divergent operons for plasmid replication and conjugative transfer. Proc Natl Acad Sci U S A 91:10571–10575 [CrossRef]
    [Google Scholar]
  23. Jagura-Burdzy G, Thomas C. M. 1995; Purification of KorA protein from broad host range plasmid RK2: definition of a hierarchy of KorA operators. J Mol Biol 253:39–50 [CrossRef]
    [Google Scholar]
  24. Jagura-Burdzy G, Ibbotson J. P, Thomas C. M. 1991; The korF region of broad-host-range plasmid RK2 encodes two polypeptides with transcriptional repressor activity. J Bacteriol 173:826–833
    [Google Scholar]
  25. Jagura-Burdzy G, Macartney D. P, Zatyka M, Cunliffe L, Cooke G. D, Huggins C, Khanim F, Thomas C. M. 1999a; Repression at a distance by the global regulator KorB of promiscuous IncP plasmids. Mol Microbiol 32:519–532 [CrossRef]
    [Google Scholar]
  26. Jagura-Burdzy G, Kostelidou K, Pole J, Khare D, Jones A, Williams D. R, Thomas C. M. 1999b; IncC of broad-host-range plasmid RK2 modulates KorB transcriptional repressor activity in vivo and operator binding in vitro . J Bacteriol 181:2807–2815
    [Google Scholar]
  27. Johnson E. P, Strom A. R, Helinski D. R. 1996; Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J Bacteriol 178:1420–1429
    [Google Scholar]
  28. Kahn M. R, Kolter R, Thomas C. M, Figurski D, Meyer R, Remault E, Helinski D. R. 1979; Plasmid cloning vehicles derived from plasmids ColE1, F, R6K and RK2. Methods Enzymol 68:268–280
    [Google Scholar]
  29. Koski P, Saarilahti H, Sukupolvi S, Taira S, Riikonen P, Osterlund K, Hurme R, Rhen M. 1992; A new alpha-helical coiled coil protein encoded by the Salmonella typhimurium virulence plasmid. J Biol Chem 267:12258–12265
    [Google Scholar]
  30. Kostelidou K, Thomas C. M. 2000; The hierarchy of KorB binding at its 12 binding sites on the broad-host-range plasmid RK2 and modulation of this binding by IncC1 protein. J Mol Biol 295:411–422 [CrossRef]
    [Google Scholar]
  31. Kostelidou K, Thomas C. M. 2002; DNA recognition by the KorA proteins of IncP-1 plasmids RK2 and R751. Biochim Biophys Acta 1576110–118 [CrossRef]
    [Google Scholar]
  32. Kovach M. E, Elzer P. H, Hill D. S, Robertson G. T, Farris M. A, Peterson K. M, Roop R. M., II. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic- resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  33. Krishnapillai V. 1988; Molecular genetic analysis of bacterial plasmid promiscuity. FEMS Microbiol Rev 4:223–237
    [Google Scholar]
  34. Kwong S. M, Yeo C. C, Chuah D, Poh C. L. 1998; Sequence analysis of plasmid pRA2 from Pseudomonas alcaligenes NCIB 9867 (P25X) reveals a novel replication region. FEMS Microbiol Lett 158:159–165 [CrossRef]
    [Google Scholar]
  35. Kwong S. M, Yeo C. C, Suwanto A, Poh C. L. 2000; Characterization of the endogenous plasmid from Pseudomonas alcaligenes NCIB 9867: DNA sequence and mechanism of transfer. J Bacteriol 182:81–90 [CrossRef]
    [Google Scholar]
  36. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  37. Lukaszewicz M, Kostelidou K, Bartosik A. A, Cooke G. D, Thomas C. M, Jagura-Burdzy G. 2002; Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res 30:1046–1055 [CrossRef]
    [Google Scholar]
  38. Ma J, Ptashne M. 1987; A new class of yeast transcriptional activators. Cell 51:113–119 [CrossRef]
    [Google Scholar]
  39. Macartney D. P, Williams D. R, Stafford T, Thomas C. M. 1997; Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology 143:2167–2177 [CrossRef]
    [Google Scholar]
  40. McKenney K, Shimatake H, Court D, Schmeissner U, Brady C, Rosenberg M. 1981; A system to study promoter and terminator signals recognized by Escherichia coli RNA polymerase. Gen Amplific Anal 2:383–415
    [Google Scholar]
  41. Motallebi-Veshareh M, Rouch D. A, Thomas C. M. 1990; A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol 4:1455–1463 [CrossRef]
    [Google Scholar]
  42. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986; Specific enzymatic amplification of DNA in vitro : the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273 [CrossRef]
    [Google Scholar]
  43. Pansegrau W, Lanka E, Barth P. T. 7 other authors 1994; Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663 [CrossRef]
    [Google Scholar]
  44. Pogliano J, Ho T. Q, Zhong Z, Helinski D. R. 2001; Multicopy plasmids are clustered and localized in Escherichia coli . Proc Natl Acad Sci U S A 98:4486–4491 [CrossRef]
    [Google Scholar]
  45. Reznekov O, Alper S, Losick R. 1996; Subcellular localization of proteins governing the proteolytic activation of a developmental transcription factor in Bacillus subtilis . Genes Cells 1:529–542 [CrossRef]
    [Google Scholar]
  46. Rhodes G, Parkhill J, Bird C, Ambrose K, Jones M. C, Huys G, Swing J, Pickup R. W. 2004; Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. App Envir Microb 70:7497–7510 [CrossRef]
    [Google Scholar]
  47. Roberts R. C, Helinski D. R. 1992; Definition of a minimal plasmid stabilization system from the broad-host-range plasmid RK2. J Bacteriol 174:8119–8132
    [Google Scholar]
  48. Roberts R. C, Spangler C, Helinski D. R. 1993; Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad host-range plasmid RK2. J Biol Chem 268:27109–27117
    [Google Scholar]
  49. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Soppa J. 2001; Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. Gene 278:253–264 [CrossRef]
    [Google Scholar]
  51. Studier F. W, Moffatt B. A. 1981; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  52. Summers D. K, Sherratt D. J. 1984; Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103 [CrossRef]
    [Google Scholar]
  53. Tauch A, Schneiker S, Selbitschka W. 13 other authors 2002; The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653
    [Google Scholar]
  54. Theophilus B. D. M, Cross M. A, Smith C. A, Thomas C. M. 1985; Regulation of the trfA and trfB promoters of broad host range plasmid RK2: identification of sequences essential for regulation by trfB/korA/korD . Nucleic Acids Res 13:8129–8142 [CrossRef]
    [Google Scholar]
  55. Thomas C. M, Theophilus B. D, Johnston L, Jagura-Burdzy G, Schilf W, Lurz R, Lanka E. 1990; Identification of a seventh operon on plasmid RK2 regulated by the korA gene product. Gene 89:29–35 [CrossRef]
    [Google Scholar]
  56. Thorsted P. B, Macartney D. P, Akhtar P. 9 other authors 1998; Complete sequence of the IncPbeta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990 [CrossRef]
    [Google Scholar]
  57. Williams D. R, Thomas C. M. 1992; Active partitioning of bacterial plasmids. J Gen Microbiol 138:1–16 [CrossRef]
    [Google Scholar]
  58. Williams D. R, Motallebi-Veshareh M, Thomas C. M. 1993; Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase-promoter complexes. Nucleic Acids Res 21:1141–1148 [CrossRef]
    [Google Scholar]
  59. Williams D. R, Macartney D. P, Thomas C. M. 1998; The partitioning activity of the RK2 central control region requires only incC , korB and KorB-binding site O(B)[sub]3[/sub] but other KorB-binding sites form destabilizing complexes in the absence of O(B)[sub]3[/sub]. Microbiology 144:3369–3378 [CrossRef]
    [Google Scholar]
  60. Yanisch-Perron C, Vieira J, Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  61. Zielenkiewicz U, Ceglowski P. 2001; Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim Pol 48:1003–1023
    [Google Scholar]
  62. Zukowski M. M, Gaffney D. F, Speck D, Kauffman M, Findeli A, Wisecup A, Lecoq J. P. 1983; Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci U S A 80:1101–1105 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28495-0
Loading
/content/journal/micro/10.1099/mic.0.28495-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error