1887

Abstract

The global response of to the broad-spectrum biocide polyhexamethylene biguanide (PHMB) was investigated using transcriptional profiling. The transcriptional analyses were validated by direct determination of the PHMB-tolerance phenotypes of derivatives of MG1655 carrying either insertionally inactivated genes and/or plasmids expressing the cognate open reading frames from a heterologous promoter in the corresponding chromosomally inactivated strains. The results showed that a wide range of genes was altered in transcriptional activity and that all of the corresponding knockout strains subsequently challenged with biocide were altered in tolerance. Of particular interest was the induction of the genes and the implication of enzymes involved in the repair/binding of nucleic acids in the generation of tolerance, suggesting a novel dimension in the mechanism of action of PHMB based on its interaction with nucleic acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28643-0
2006-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/989.html?itemId=/content/journal/micro/10.1099/mic.0.28643-0&mimeType=html&fmt=ahah

References

  1. Allen M. J, Morby A. P, White G. F. 2004; Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochem Biophys Res Commun 318:397–404 [CrossRef]
    [Google Scholar]
  2. Andrews S. C, Berks B. C, McClay J, Ambler A, Quail M. A, Golby P, Guest J. R. 1997; A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647 [CrossRef]
    [Google Scholar]
  3. Blankenhorn D, Phillips J, Slonczewski J. L. 1999; Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181:2209–2216
    [Google Scholar]
  4. Blattner F. R, Plunkett G. R, Bloch C. A. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  5. Bordi C, Theraulaz L, Mejean V, Jourlin-Castelli C. 2003; Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli . Mol Microbiol 48:211–223 [CrossRef]
    [Google Scholar]
  6. Boulanger A, Francez-Charlot A, Conter A, Castanie-Cornet M. P, Cam K, Gutierrez C. 2005; Multistress regulation in Escherichia coli : expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB His-Asp phosphorelay. J Bacteriol 187:3282–3286 [CrossRef]
    [Google Scholar]
  7. Brocklehurst K. R, Morby A. P. 2000; Metal-ion tolerance in Escherichia coli : analysis of transcriptional profiles by gene-array technology. Microbiology 146:2277–2282
    [Google Scholar]
  8. Bronder M, Mell H, Stupperich E, Kroger A. 1982; Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131:216–223 [CrossRef]
    [Google Scholar]
  9. Broxton P, Woodcock P. M, Gilbert P. 1983; A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J Appl Bacteriol 54:345–353 [CrossRef]
    [Google Scholar]
  10. Broxton P, Woodcock P. M, Gilbert P. 1984; Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli . J Appl Bacteriol 57:115–124 [CrossRef]
    [Google Scholar]
  11. Cazzaniga A, Serralta V, Davis S, Orr R, Eaglstein W, Mertz P. M. 2002; The effect of an antimicrobial gauze dressing impregnated with 0·2-percent polyhexamethylene biguanide as a barrier to prevent Pseudomonas aeruginosa wound invasion. Wounds-Compend Clin Res Pract 14:169–176
    [Google Scholar]
  12. Cohen S. S. 1998 A Guide To Polyamines pp  185–230 Oxford: Oxford University Press;
    [Google Scholar]
  13. Conter A, Sturny R, Gutierrez C, Cam K. 2002; The RcsCB His-Asp phosphorelay system is essential to overcome chlorpromazine-induced stress in Escherichia coli . J Bacteriol 184:2850–2853 [CrossRef]
    [Google Scholar]
  14. Cox N. A, Bailey J. S, Berrang M. E. 1998; Bactericidal treatment of hatching eggs. I. Chemical immersion treatments and salmonella. J Appl Poult Res 7:347–350 [CrossRef]
    [Google Scholar]
  15. Cox N. A, Berrang M. E, Buhr R. J, Bailey J. S. 1999; Bactericidal treatment of hatching eggs. II. Use of chemical disinfectants with vacuum to reduce salmonella. J Appl Poult Res 8:321–326 [CrossRef]
    [Google Scholar]
  16. Datsenko K. A, Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  17. Davies A, Bentley M, Field B. S. 1968; Comparison of the action of vantocil, cetrimide and chlorhexidine on Escherichia coli and its spheroplasts and the protoplasts of gram positive bacteria. J Appl Bacteriol 31:448–461 [CrossRef]
    [Google Scholar]
  18. DiGiuseppe P. A, Silhavy T. J. 2003; Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185:2432–2440 [CrossRef]
    [Google Scholar]
  19. Di Martino P, Merieau A, Phillips R, Orange N, Hulen C. 2002; Isolation of an Escherichia coli strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase. Can J Microbiol 48:132–137 [CrossRef]
    [Google Scholar]
  20. Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips R. S. 2003; Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449 [CrossRef]
    [Google Scholar]
  21. Donoso R, Mura J. J, Lopez M. 2002; Acanthamoeba keratitis treated with propamidine and polyhexamethyl biguanide (PHMB). Rev Med Chil 130:396–401
    [Google Scholar]
  22. Dorman C. J. 2004; H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400 [CrossRef]
    [Google Scholar]
  23. Dorman C. J, Deighan P. 2003; Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 13:179–184 [CrossRef]
    [Google Scholar]
  24. Dorman C. J, Hinton J. C, Free A. 1999; Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7:124–128 [CrossRef]
    [Google Scholar]
  25. Duguay A. R, Silhavy T. J. 2004; Quality control in the bacterial periplasm. Biochim Biophys Acta 1694:121–134 [CrossRef]
    [Google Scholar]
  26. Foster S. J. 1993; Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol Microbiol 8:299–310 [CrossRef]
    [Google Scholar]
  27. Gerdes S. Y, Scholle M. D, Campbell J. W. 18 other authors 2003; Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684 [CrossRef]
    [Google Scholar]
  28. Gilbert P, Pemberton D, Wilkinson D. E. 1990a; Barrier properties of the Gram-negative cell envelope towards high molecular weight polyhexamethylene biguanides. J Appl Bacteriol 69:585–592 [CrossRef]
    [Google Scholar]
  29. Gilbert P, Pemberton D, Wilkinson D. E. 1990b; Synergism within polyhexamethylene biguanide biocide formulations. J Appl Bacteriol 69:593–598 [CrossRef]
    [Google Scholar]
  30. Golby P, Kelly D. J, Guest J. R, Andrews S. C. 1998; Transcriptional regulation and organization of the dcuA and dcuB genes, encoding homologous anaerobic C4-dicarboxylate transporters in Escherichia coli . J Bacteriol 180:6586–6596
    [Google Scholar]
  31. Gottesman S. 1995; Regulation of capsule synthesis: modification of the two-component paradigm by an accessory unstable regulator. In Two-Component Signal Transduction pp  253–262 Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Gray T. B, Gross K. A, Cursons R. T. M, Shewan J. F. 1994; Acanthamoeba -keratitis – a sobering case and a promising new treatment. Aust N Z J Ophthalmol 22:73–76 [CrossRef]
    [Google Scholar]
  33. Herring C. D, Blattner F. R. 2004; Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR . J Bacteriol 186:6714–6720 [CrossRef]
    [Google Scholar]
  34. Hill C. W, Sandt C. H, Vlazny D. A. 1994; Rhs elements of Escherichia coli – a family of genetic composites each encoding a large mosaic protein. Mol Microbiol 12:865–871 [CrossRef]
    [Google Scholar]
  35. Hirano T, Minamino T, Macnab R. M. 2001; The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol 312:359–369 [CrossRef]
    [Google Scholar]
  36. Hiti K, Walochnik J, Haller-Schober E. M, Faschinger C, Aspock H. 2002; Viability of Acanthamoeba after exposure to a multipurpose disinfecting contact lens solution and two hydrogen peroxide systems. Br J Ophthalmol 86:144–146 [CrossRef]
    [Google Scholar]
  37. Hung D. L, Raivio T. L, Jones C. H, Silhavy T. J, Hultgren S. J. 2001; Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 20:1508–1518 [CrossRef]
    [Google Scholar]
  38. Ikeda T, Tazuke S, Bamford C. H, Ledwith A. 1984; Interaction of polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta 54:796–799
    [Google Scholar]
  39. Jung J. U, Gutierrez C, Martin F, Ardourel M, Villarejo M. 1990; Transcription of osmB , a gene encoding an Escherichia coli lipoprotein, is regulated by dual signals. Osmotic stress and stationary phase. J Biol Chem 265:10574–10581
    [Google Scholar]
  40. Khunkitti W, Hann A. C, Lloyd D, Furr J. R, Russell A. D. 1998; Biguanide-induced changes in Acanthamoeba castellanii : an electron microscopic study. J Appl Microbiol 84:53–62 [CrossRef]
    [Google Scholar]
  41. Khunkitti W, Hann A. C, Lloyd D, Furr J. R, Russell A. D. 1999; X-ray microanalysis of chlorine and phosphorus content in biguanide-treated Acanthamoeba castellanii . J Appl Microbiol 86:453–459 [CrossRef]
    [Google Scholar]
  42. Kim Y. H, Park J. S, Cho J. Y, Cho K. M, Park Y. H, Lee J. 2004; Proteomic response analysis of a threonine-overproducing mutant of Escherichia coli . Biochem J 381:823–829 [CrossRef]
    [Google Scholar]
  43. Kusnetsov J. M, Tulkki A. I, Ahonen H. E, Martikainen P. J. 1997; Efficacy of three prevention strategies against legionella in cooling water systems. J Appl Microbiol 82:763–768 [CrossRef]
    [Google Scholar]
  44. Lacour S, Landini P. 2004; SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli : function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195 [CrossRef]
    [Google Scholar]
  45. Lammi M, Paci M, Pon C. L, Losso M. A, Miano A, Pawlik R. T, Gianfranceschi G. L, Gualerzi C. O. 1984; Proteins from the prokaryotic nucleoid: biochemical and [sup]1[/sup]H NMR studies on three bacterial histone-like proteins. Adv Exp Med Biol 179:467–477
    [Google Scholar]
  46. Lin R. J, Capage M, Hill C. W. 1984; A repetitive DNA sequence, rhs , responsible for duplications within the Escherichia coli K-12 chromosome. J Mol Biol 177:1–18 [CrossRef]
    [Google Scholar]
  47. Lomba M. R, Vasconcelos A. T, Pacheco A. B, de Almeida D. F. 1997; Identification of yebG as a DNA damage-inducible Escherichia coli gene. FEMS Microbiol Lett 156:119–122 [CrossRef]
    [Google Scholar]
  48. Low D, Braaten B, Woude V. D. and others 1987 Fimbriae. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Messick C. R, Pendland S. L, Moshirfar M, Fiscella R. G, Losnedahl K. J, Schriever C. A, Schreckenberger P. C. 1999; In-vitro activity of polyhexamethylene biguanide (PHMB) against fungal isolates associated with infective keratitis. J Antimicrob Chemother 44:297–298 [CrossRef]
    [Google Scholar]
  50. Mori H, Isono K, Horiuchi T, Miki T. 2000; Functional genomics of Escherichia coli in Japan. Res Microbiol 151:121–128 [CrossRef]
    [Google Scholar]
  51. Nambu T, Minamino T, Macnab R. M, Kutsukake K. 1999; Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium . J Bacteriol 181:1555–1561
    [Google Scholar]
  52. Narasimhan S, Madhavan H. N, Therese L. K. 2002; Development and application of an in vitro susceptibility test for Acanthamoeba species isolated from keratitis to polyhexamethylene biguanide and chlorhexidine. Cornea 21:203–205 [CrossRef]
    [Google Scholar]
  53. Oh T. J, Kim I. G. 1999; Identification of genetic factors altering the SOS induction of DNA damage-inducible yebG gene in Escherichia coli . FEMS Microbiol Lett 177:271–277 [CrossRef]
    [Google Scholar]
  54. Payne J. D, Kudner D. W. 1996; A durable antiodor finish for cotton textiles. Text Chem Color 28:28–30
    [Google Scholar]
  55. Polen T, Rittmann D, Wendisch V. F, Sahm H. 2003; DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol 69:1759–1774 [CrossRef]
    [Google Scholar]
  56. Raivio T. L, Popkin D. L, Silhavy T. J. 1999; The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 181:5263–5272
    [Google Scholar]
  57. Rosin M, Welk A, Bernhardt O, Ruhnau M, Pitten F. A, Kocher T, Kramer A. 2001; Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. J Clin Periodontol 28:1121–1126 [CrossRef]
    [Google Scholar]
  58. Rosin M, Welk A, Kocher T, Majic-Todt A, Kramer A, Pitten F. A. 2002; The effect of a polyhexamethylene biguanide mouthrinse compared to an essential oil rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque regrowth. J Clin Periodontol 29:392–399 [CrossRef]
    [Google Scholar]
  59. Sadosky A. B, Gray J. A, Hill C. W. 1991; The Rhsd-E subfamily of Escherichia coli K-12. Nucleic Acids Res 19:7177–7183 [CrossRef]
    [Google Scholar]
  60. Salinas P, Contreras A. 2003; Identification and analysis of Escherichia coli proteins that interact with the histidine kinase NtrB in a yeast two-hybrid system. Mol Gen Genomics 269:574–581 [CrossRef]
    [Google Scholar]
  61. Sawers R. G. 2005; Formate and its role in hydrogen production in Escherichia coli . Biochem Soc Trans 33:42–46 [CrossRef]
    [Google Scholar]
  62. Serres M. H, Goswami S, Riley M. 2004; GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res 32:D300–D302 [CrossRef]
    [Google Scholar]
  63. Silva M. T, Sousa J. C. F, Polonia J. J, Macedo P. M. 1979; Effects of local anesthetics on bacterial cells. J Bacteriol 137:461–468
    [Google Scholar]
  64. Stancik L. M, Stancik D. M, Schmidt B, Barnhart D. M, Yoncheva Y. N, Slonczewski J. L. 2002; pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli . J Bacteriol 184:4246–4258 [CrossRef]
    [Google Scholar]
  65. Vijayanathan V, Thomas T, Thomas T. J. 2002; DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41:14085–14094 [CrossRef]
    [Google Scholar]
  66. Wallace H. M. 2003; Polyamines and their role in human disease – an introduction. Biochem Soc Trans 31:354–355 [CrossRef]
    [Google Scholar]
  67. Wang Y. D, Zhao S, Hill C. W. 1998; Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli . J Bacteriol 180:4102–4110
    [Google Scholar]
  68. Wang D, Ding X, Rather P. N. 2001; Indole can act as an extracellular signal in Escherichia coli . J Bacteriol 183:4210–4216 [CrossRef]
    [Google Scholar]
  69. Wright B. E. 2004; Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650 [CrossRef]
    [Google Scholar]
  70. Yang H, Wolff E, Kim M, Diep A, Miller J. H. 2004; Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol Microbiol 53:283–295 [CrossRef]
    [Google Scholar]
  71. Yohannes E, Barnhart D. M, Slonczewski J. L. 2004; pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186:192–199 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28643-0
Loading
/content/journal/micro/10.1099/mic.0.28643-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error