1887

Abstract

The genome of ATCC 25745 contains a gene cluster that resembles a regulated bacteriocin system. The gene cluster has an operon-like structure consisting of a putative pediocin-like bacteriocin gene (termed ) and a potential immunity gene (termed ). Genetic determinants involved in bacteriocin transport and regulation are also found in proximity to and but the so-called accessory gene involved in transport and the inducer gene involved in regulation are missing. Consequently, this bacterium is a poor bacteriocin producer. To analyse the potency of the putative bacteriocin operon, the two genes were heterologously expressed in a host that contains the complete apparatus for gene activation, maturation and externalization of bacteriocins. It was demonstrated that the heterologous host expressing and produced a strong bacteriocin activity; in addition, the host became immune to its own bacteriocin, identifying the gene pair as a potent bacteriocin system. The novel pediocin-like bacteriocin, termed penocin A, has an isotopic mass [M+H] of 4684.6 Da as determined by mass spectrometry; this value corresponds well to the expected size of the mature 42 aa peptide containing a disulfide bridge. The bacteriocin is heat-stable but protease-sensitive and has a calculated pI of 9.45. Penocin A has a relatively broad inhibition spectrum, including pathogenic and species. Immediately upstream of the regulatory genes reside some features that resemble remnants of a disrupted inducer gene. This degenerate gene was restored and shown to encode a double-glycine leader-containing peptide. Furthermore, expression of the restored gene triggered high bacteriocin production in ATCC 25745, thus confirming its role as an inducer in the regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28794-0
2006-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1649.html?itemId=/content/journal/micro/10.1099/mic.0.28794-0&mimeType=html&fmt=ahah

References

  1. Altermann E, Russell W. M, Azcarate-Peril M. A. 11 other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912 [CrossRef]
    [Google Scholar]
  2. Aukrust T, Nes I. F. 1988; Transformation of Lactobacillus plantarum with the plasmid pTV1 by electroporation. FEMS Microbiol Lett 52:127–132 [CrossRef]
    [Google Scholar]
  3. Axelsson L, Katla T, Bjornslett M, Eijsink V. G, Holck A. 1998; A system for heterologous expression of bacteriocins in Lactobacillus sake . FEMS Microbiol Lett 168:137–143 [CrossRef]
    [Google Scholar]
  4. Bauer R, Dicks L. M. 2005; Mode of action of lipid II-targeting lantibiotics. Int J Food Microbiol 101:201–216 [CrossRef]
    [Google Scholar]
  5. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich S. D, Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [CrossRef]
    [Google Scholar]
  6. Bolotin A, Quinquis B, Renault P. 20 other authors 2004; Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus . Nat Biotechnol 22:1554–1558 [CrossRef]
    [Google Scholar]
  7. Brurberg M. B, Nes I. F, Eijsink V. G. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus . Mol Microbiol 26:347–360 [CrossRef]
    [Google Scholar]
  8. Caldwell S. L, McMahon D. J, Oberg C. J, Broadbent J. R. 1996; Development and characterization of lactose-positive Pediococcus species for milk fermentation. Appl Environ Microbiol 63:936–941
    [Google Scholar]
  9. Chaillou S, Champomier-Verges M. C, Cornet M. 8 other authors 2005; The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533 [CrossRef]
    [Google Scholar]
  10. Cintas L. M, Casaus P, Havarstein L. S, Hernandez P. E, Nes I. F. 1997; Biochemical and genetic characterization of enterocin P, a novel sec -dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330
    [Google Scholar]
  11. Diep D. B, Nes I. F. 2002; Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3:107–122 [CrossRef]
    [Google Scholar]
  12. Diep D. B, Havarstein L. S, Nes I. F. 1995; A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639 [CrossRef]
    [Google Scholar]
  13. Diep D. B, Havarstein L. S, Nes I. F. 1996; Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483
    [Google Scholar]
  14. Diep D. B, Axelsson L, Grefsli C, Nes I. F. 2000; The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146:2155–2160
    [Google Scholar]
  15. Diep D. B, Johnsborg O, Risoen P. A, Nes I. F. 2001; Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum . Mol Microbiol 41:633–644 [CrossRef]
    [Google Scholar]
  16. Diep D. B, Myhre R, Johnsborg O, Aakra A, Nes I. F. 2003; Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol 47:483–494 [CrossRef]
    [Google Scholar]
  17. Eijsink V. G, Skeie M, Middelhoven P. H, Brurberg M. B, Nes I. F. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281
    [Google Scholar]
  18. Eijsink V. G, Axelsson L, Diep D. B, Havarstein L. S, Holo H, Nes I. F. 2002; Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek 81:639–654 [CrossRef]
    [Google Scholar]
  19. Gravesen A, Ramnath M, Rechinger K. B, Andersen N, Jansch L, Hechard Y, Hastings J. W, Knochel S. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology 148:2361–2369
    [Google Scholar]
  20. Hauge H. H, Mantzilas D, Moll G. N, Konings W. N, Driessen A. J, Eijsink V. G, Nissen-Meyer J. 1998; Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37:16026–16032 [CrossRef]
    [Google Scholar]
  21. Havarstein L. S, Holo H, Nes I. F. 1994; The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140:2383–2389 [CrossRef]
    [Google Scholar]
  22. Havarstein L. S, Diep D. B, Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240 [CrossRef]
    [Google Scholar]
  23. Hechard Y, Sahl H. G. 2002; Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557 [CrossRef]
    [Google Scholar]
  24. Hechard Y, Pelletier C, Cenatiempo Y, Frere J. 2001; Analysis of σ [sup]54[/sup]-dependent genes in Enterococcus faecalis : a mannose PTS permease (EII[sub]Man[/sub]) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  25. Holo H, Nilssen O, Nes I. F. 1991; Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris : isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887
    [Google Scholar]
  26. Horn N, Martinez M. I, Martinez J. M, Hernandez P. E, Gasson M. J, Rodriguez J. M, Dodd H. M. 1998; Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl Environ Microbiol 64:818–823
    [Google Scholar]
  27. Horn N, Martinez M. I, Martinez J. M, Hernandez P. E, Gasson M. J, Rodriguez J. M, Dodd H. M. 1999; Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis . Appl Environ Microbiol 65:4443–4450
    [Google Scholar]
  28. Jack R. W, Tagg J. R, Ray B. 1995; Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200
    [Google Scholar]
  29. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85 [CrossRef]
    [Google Scholar]
  30. Kleerebezem M, Quadri L. E. 2001; Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596 [CrossRef]
    [Google Scholar]
  31. Kleerebezem M, Kuipers O. P, de Vos W. M. 1999; The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In Cell-Cell Signaling in Bacteria pp  159–174 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Kleerebezem M, Boekhorst J, van Kranenburg R. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995 [CrossRef]
    [Google Scholar]
  33. Kuipers O. P, Beerthuyzen M. M, Siezen R. J, De Vos W. M. 1993; Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis . Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291 [CrossRef]
    [Google Scholar]
  34. Marugg J. D, Gonzalez C. F, Kunka B. S, Ledeboer A. M, Pucci M. J, Toonen M. Y, Walker S. A, Zoetmulder L. C, Vandenbergh P. A. 1992; Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol 58:2360–2367
    [Google Scholar]
  35. Møretrø T, Naterstad K, Wang E, Aasen I. M, Chaillou S, Zagorec M, Axelsson L. 2005; Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol 156:949–960 [CrossRef]
    [Google Scholar]
  36. Nes I. F, Diep D. B, Havarstein L. S, Brurberg M. B, Eijsink V, Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128 [CrossRef]
    [Google Scholar]
  37. Pridmore R. D, Berger B, Desiere F. 12 other authors 2004; The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 24:2512–2517
    [Google Scholar]
  38. Riley M. A, Wertz J. E. 2002; Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137 [CrossRef]
    [Google Scholar]
  39. Risoen P. A, Havarstein L. S, Diep D. B, Nes I. F. 1998; Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol Gen Genet 259:224–232
    [Google Scholar]
  40. Risoen P. A, Brurberg M. B, Eijsink V. G, Nes I. F. 2000; Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus . Mol Microbiol 37:619–628
    [Google Scholar]
  41. Risoen P. A, Johnsborg O, Diep D. B, Hamoen L, Venema G, Nes I. F. 2001; Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol Genet Genomics 265:198–206 [CrossRef]
    [Google Scholar]
  42. Sablon E, Contreras B, Vandamme E. 2000; Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol 68:21–60
    [Google Scholar]
  43. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos W. M. 2005; Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204–211 [CrossRef]
    [Google Scholar]
  44. Stevens K. A, Sheldon B. W, Klapes N. A, Klaenhammer T. R. 1991; Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl Environ Microbiol 57:3613–3615
    [Google Scholar]
  45. Stoddard G. W, Petzel J. P, Kok J, McKay L. L, van Belkum M. J. 1992; Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol 58:1952–1961
    [Google Scholar]
  46. van Belkum M. J., Stiles M. E. 1995; Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum . Appl Environ Microbiol 61:3573–3579
    [Google Scholar]
  47. van Belkum M. J, Worobo R. W, Stiles M. E. 1997; Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis . Mol Microbiol 23:1293–1301 [CrossRef]
    [Google Scholar]
  48. van de Guchte M, van der Vossen J. M, Kok J, Venema G. 1989; Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis . Appl Environ Microbiol 55:224–228
    [Google Scholar]
  49. Vaughan A, Eijsink V. G, Van Sinderen D. 2003; Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28794-0
Loading
/content/journal/micro/10.1099/mic.0.28794-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error