1887

Abstract

The gene of the operon, which is instrumental in the control of the biosynthesis of the exopolysaccharide alginate, is a hotspot of mutation in , a micro-organism that chronically colonizes the airways of individuals with cystic fibrosis (CF). The , and genes were sequenced in nine environmental isolates from aquatic habitats, and in 37 strains isolated from 10 patients with CF, at onset or at a late stage of chronic airway colonization, in order to elucidate whether there was any association between mutation and background genotype. The 61 identified single nucleotide polymorphisms (SNPs) segregated into 18 genotypes. Acquired and stop mutations were present in 14 isolates (38 %) of five genotypes. ΔG430 was the most frequent and recurrent mutation detected in four genotypes. The classification of strains by genotype was generally concordant with that by genome-wide SpeI fragment pattern or multilocus SNP genotypes. The exceptions point to intragenic mosaicism and interclonal recombination as major forces for intraclonal evolution at the locus.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29175-0
2006-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/11/3261.html?itemId=/content/journal/micro/10.1099/mic.0.29175-0&mimeType=html&fmt=ahah

References

  1. Anthony M, Rose B, Pegler M. B. 7 other authors 2002; Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40:2772–2778 [CrossRef]
    [Google Scholar]
  2. Arora S, Bangera S, Lory S, Ramphal R. 2001; A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci U S A 98:9342–9347 [CrossRef]
    [Google Scholar]
  3. Breitenstein S, Walter S, Bosshammer J, Römling U, Tümmler B. 1997; Direct sputum analysis of Pseudomonas aeruginosa macrorestriction fragment genotypes in patients with cystic fibrosis. Med Microbiol Immunol (Berl) 186:93–99 [CrossRef]
    [Google Scholar]
  4. Curran B, Jonas D, Grundmann H, Pitt T, Dowson C. G. 2004; Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa . J Clin Microbiol 42:5644–5649 [CrossRef]
    [Google Scholar]
  5. Dayhoff M. O, Schwartz R. M, Orcutt B. C. 1978; A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure vol. 5suppl. 3 pp  345–352 Edited by Dayhoff M. O. Washington, DC: National Biomedical Research Foundation;
    [Google Scholar]
  6. Dinesh S. D, Grundmann H, Pitt T. L, Römling U. 2003; European-wide distribution of Pseudomonas aeruginosa clone C. Clin Microbiol Infect 9:1228–1233 [CrossRef]
    [Google Scholar]
  7. Ernst R. K, D'Argenio D. A, Ichikawa J. K. 12 other authors 2003; Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 5:1341–1349 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 2002 phylip (Phylogeny Inference Package) version 3.6 (alpha 3). Distributed by the author Seattle, WA: University of Washington;
    [Google Scholar]
  9. Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser A. R. 2001; Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiology 147:2659–2669
    [Google Scholar]
  10. French S, Robson B. 1983; What is a conservative substitution?. J Mol Evol 19:171–175 [CrossRef]
    [Google Scholar]
  11. Friedman R, Drake W. J, Hughes A. L. 2004; Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles. Genetics 167:1507–1512 [CrossRef]
    [Google Scholar]
  12. Hakenbeck R. 1998; Mosaic genes and their role in penicillin-resistant Streptococcus pneumoniae . Electrophoresis 19:597–601 [CrossRef]
    [Google Scholar]
  13. Jordan I. K, Rogozin I. B, Wolf V. I, Koonin E. V. 2002; Microevolutionary genomics of bacteria. Theor Popul Biol 61:435–447 [CrossRef]
    [Google Scholar]
  14. Kiewitz C, Tümmler B. 2000; Sequence diversity of Pseudomonas aeruginosa : impact on population structure and genome evolution. J Bacteriol 182:3125–3135 [CrossRef]
    [Google Scholar]
  15. Kresse A. U, Dinesh S. D, Larbig K, Römling U. 2003; Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs. Mol Microbiol 47:145–158
    [Google Scholar]
  16. Lam J, Chan R, Lam K, Costerton J. W. 1980; Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28:546–556
    [Google Scholar]
  17. Larbig K. D, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, Wiehlmann L, Fritz H. J, Tümmler B. 2002; Gene islands integrated into tRNA(Gly) genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184:6665–6680 [CrossRef]
    [Google Scholar]
  18. Liberati N. T, Urbach J. M, Miyata S, Lee D. G, Drenkard E, Wu G, Villanueva J, Wie T, Ausubel F. M. 2006; An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [CrossRef]
    [Google Scholar]
  19. Lynch M, Conery J. S. 2003; The origin of genome complexity. Science 302:1401–1404 [CrossRef]
    [Google Scholar]
  20. Martin D. W, Schurr M. J, Mudd M. H, Deretic V. 1993a; Differentiation of Pseudomonas aeruginosa into the alginate-producing form: inactivation of mucB causes conversion to mucoidy. Mol Microbiol 9:497–506 [CrossRef]
    [Google Scholar]
  21. Martin D. W, Schurr M. J, Mudd M. H, Govan J. R. W, Holloway B. W, Deretic V. 1993b; Mechanisms of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381 [CrossRef]
    [Google Scholar]
  22. Mathee K, McPherson C. J, Ohman D. E. 1997; Posttranslational control of the algT (algU)-encoded σ [sup]22[/sup] for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179:3711–3720
    [Google Scholar]
  23. Mathee K, Ciofu O, Sternberg C. 9 other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [CrossRef]
    [Google Scholar]
  24. Morales G, Wiehlmann L, Gudowius P, van Delden C, Tümmler B, Martinez J. L, Rojo F. 2004; Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J Bacteriol 186:4228–4237 [CrossRef]
    [Google Scholar]
  25. Pirnay J. P, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, Ghysels B, Cornelis P. 2002a; Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol 4:898–911 [CrossRef]
    [Google Scholar]
  26. Pirnay J. P, De Vos D, Mossialos D, Vanderkelen A, Cornelis P, Zizi M. 2002b; Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. Environ Microbiol 4:872–882 [CrossRef]
    [Google Scholar]
  27. Ramsey D. M, Wozniak D. J. 2005; Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322 [CrossRef]
    [Google Scholar]
  28. Römling U, Fiedler B, Bosshammer J, Grothues D, Greipel J, von der Hardt H, Tümmler B. 1994; Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170:1616–1621 [CrossRef]
    [Google Scholar]
  29. Schurr M. J, Yu H, Martinez-Salazar J. M, Boucher J. C, Deretic V. 1996; Control of AlgU, a member of the σ [sup]E[/sup]-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178:4997–5004
    [Google Scholar]
  30. Smith E. E, Buckley D. G, Wu Z. 10 other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492 [CrossRef]
    [Google Scholar]
  31. Spangenberg C, Heuer T, Bürger C, Tümmler B. 1996; Genetic diversity of flagellins of Pseudomonas aeruginosa . FEBS Lett 396:213–217 [CrossRef]
    [Google Scholar]
  32. Spangenberg C, Montie T. C, Tümmler B. 1998; Structural and functional implications of sequence diversity of Pseudomonas aeruginosa genes oriC, ampC and fliC . Electrophoresis 19:545–550 [CrossRef]
    [Google Scholar]
  33. Spencer D. H, Kas A, Smith E. E, Raymond C. K, Sims E. H, Hastings M, Burns J. L, Kaul R, Olson M. V. 2003; Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa . J Bacteriol 185:1316–1325 [CrossRef]
    [Google Scholar]
  34. Taylor W. R. 1986; The classification of amino acid conservation. J Theor Biol 119:205–218 [CrossRef]
    [Google Scholar]
  35. Tümmler B. 2006; Clonal variations in Pseudomonas aeruginosa. In Pseudomonas vol. 4 pp  35–68 Edited by Ramos J.-L., Levesque R. C. Heidelberg: Springer;
    [Google Scholar]
  36. Wood L. F, Ohman D. E. 2006; Independent regulation of MucD, an HtrA-like protease in Pseudomonas aeruginosa , and the role of its proteolytic motif in alginate gene regulation. J Bacteriol 188:3134–3137 [CrossRef]
    [Google Scholar]
  37. Yoon S. S, Coakley R, Lau G. W. 12 other authors 2006; Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J Clin Invest 116:436–446 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29175-0
Loading
/content/journal/micro/10.1099/mic.0.29175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error