1887

Abstract

Anaerobically grown fermented glucose with the production of lactate and trace amounts of acetate, formate and CO. Isotopic and inhibitor studies, assays for key enzymes of different metabolic pathways, and fermentation balances, all indicated that glucose was metabolized principally via glycolysis and to a very limited extent by the hexose monophosphate oxidative pathway. Serine fermentation proceeded via deamination and dismutation yielding NH and equimolar amounts of lactate, acetate and CO; small amounts of formate arose by the operation of pyruvate-formate lyase. Incorporation of 0·5% (w/v) glucose in the growth medium depressed serine metabolism by repressing the activities of serine dehydratase and pyruvate dehydrogenase but, conversely, enhanced the activities of phosphofructokinase and lactate dehydrogenase. Glucose-grown organisms at various stages of anaerobic batch growth showed an inverse relationship between the rates of fermentation of serine and glucose. -Lactate dehydrogenase activity in crude extracts depended on fructose 1,6-bisphosphate, and fructose 1,6-bisphosphate aldolase was found to be a class I aldolase. Despite the presence of ribokinase, -ribose-5- phosphate isomerase, transaldolase and transketolase, the organisms utilized ribose only after growth aerobically in basal medium, and then at a slow rate after an initial lag period.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-118-1-143
1980-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/118/1/mic-118-1-143.html?itemId=/content/journal/micro/10.1099/00221287-118-1-143&mimeType=html&fmt=ahah

References

  1. Amelunxen R. E., Carr D. O. 1975; Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. Methods in Enzymology 41:264–267
    [Google Scholar]
  2. Barker S. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry 138:535–554
    [Google Scholar]
  3. Bentley C. M., Dawes E. A. 1974; The energy yielding reactions of Peptococcus prévotii,their behaviour on starvation and the role and regulation of threonine dehydratase. Archives of Microbiology 100:363–387
    [Google Scholar]
  4. Bethge P. O., Lindström K. 1974; Determination of organic acids of low relative molecular mass (C1to C4) in dilute aqueous solution. Analyst 99:137–142
    [Google Scholar]
  5. Bluhm L., Ordal Z. J. 1969; Effect of sublethal heat on metabolic activity of Staphylococcus aureus. Journal of Bacteriology 97:140–150
    [Google Scholar]
  6. Blumenthal H. J. 1972; Glucose catabolism in staphylococci. In The Staphylococci pp. 111–135 Cohen J. O. Edited by New York: Wiley-Interscience;
    [Google Scholar]
  7. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry 1:279–285
    [Google Scholar]
  8. Brock D. J. H. 1969; Purification and properties of sheep liver phosphofructokinase. Biochemical Journal 113:235–242
    [Google Scholar]
  9. Das S. K., Chatterjee G. C. 1962; Pyrithiamine adaptation of Staphylococcus aureus. I. Adaptation and carbohydrate utilization. Journal of Bacteriology 83:1251–1259
    [Google Scholar]
  10. Dawes E. A., Holms W. H. 1958a; Metabolism of Sarcina lutea. I. Carbohydrate oxidation and terminal respiration. Journal of Bacteriology 75:390–399
    [Google Scholar]
  11. Dawes E. A., Holms W. H. 1958b; Metabolism of Sarcina lutea. II. Isotopic evaluation of the routes of glucose utilization. Biochimica et biophysica acta 29:82–91
    [Google Scholar]
  12. Dawes E. A., Ribbons D. W., Large P. J. 1966; The route of ethanol formation in Zymomonas mobilis. Biochemical Journal 98:795–803
    [Google Scholar]
  13. Dirar H., Collins E. B. 1972; End-products, fermentation balances and molar growth yields of homofermentative lactobacilli. Journal of General Microbiology 73:233–238
    [Google Scholar]
  14. Domagk G. F., Doering K. M. 1975; d-Ribose-5-phosphate isomerase from Candida utilis. Methods in Enzymology 41:427–429
    [Google Scholar]
  15. Gardner J. F., Lascelles J. 1962; The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. Journal of General Microbiology 29:157–164
    [Google Scholar]
  16. Gonzalez-Cerezo H., Dalziel K. 1975; l-α-Glycerophosphate dehydrogenase from beef liver. Methods in Enzymology 41:259–264
    [Google Scholar]
  17. Götz F., Schleifer K. H. 1978; Biochemical properties and the physiological role of the fructose-1,6-bisphosphate activated l-lactate de-hydrogenase from Staphylococcus epidermidis. European Journal of Biochemistry 90:555–561
    [Google Scholar]
  18. Götz F., Demsar E., Schleifer K. H. 1978; Distribution of class-I and class-II d-fructose-1,6-diphosphate aldolase in various bacteria. In Abstracts of the XIIth International Congress of Microbiology München: p. 118
    [Google Scholar]
  19. Gracy R. W., Tilley B. E. 1975; Phospho-glucose isomerase of human erythrocytes and cardiac tissue. Methods in Enzymology 41:392–400
    [Google Scholar]
  20. Hancock R. 1960; The bactericidal action of streptomycin on Staphylococcus aureus and some accompanying changes. Journal of General Microbiology 23:179–196
    [Google Scholar]
  21. Hoo R. L., Wadke M., Blumenthal H. J. 1971; Control of the hexosemonophosphate (HMP) pathway by NAD in Staphylococcus aureus. Bacteriological Proceedings 133:
    [Google Scholar]
  22. Horan N. J., Midgley M., Dawes E. A. 1978a; Anaerobic transport of serine and 2-aminoiso-butyric acid by Staphylococcus epidermidis. Journal of General Microbiology 109:119–126
    [Google Scholar]
  23. Horan N. J., Midgley M., Dawes E. A. 1978b; Effect of starvation on transport, membrane potential and survival of Staphylococcus epidermidis. Society for General Microbiology Quarterly 6:34
    [Google Scholar]
  24. Hugget A. ST. G., Nixon D. A. 1957; Enzymic determination of blood glucose. Biochemical Journal 66:12P
    [Google Scholar]
  25. Idriss J. M., Blumenthal H. J. 1967; Effect of thiamine and niacin on the glucose catabolic pathways of staphylococci. Bacteriological Proceedings 127:
    [Google Scholar]
  26. Ivler D. 1965; Comparative metabolism of virulent and avirulent staphylococci. Annals of the New York Academy of Sciences 128: Art 1 62–80
    [Google Scholar]
  27. Jones D. W., Kay J. J. 1976; Determination of volatile fatty acids C1-C6 and lactic acid in silage juice. Journal of the Science of Food and Agriculture 21:1005–1014
    [Google Scholar]
  28. Kersters K., De Ley J. 1968; The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie van Leeuwenhoek 34:393–408
    [Google Scholar]
  29. Krebs H. A. 1937; Dismutation of pyruvic acid in Gonococcus and Staphylococcus. Biochemical Journal 31:661–671
    [Google Scholar]
  30. Krietsch W. K. G. 1975; Triosephosphate isomerase from yeast. Methods in Enzymology 41:434–438
    [Google Scholar]
  31. Kuby S. A., Noltmann E. A. 1966; Glucose-6-phosphate dehydrogenase (crystalline) from brewer’s yeast. Methods in Enzymology 9:116–125
    [Google Scholar]
  32. Lebherz H. G., Rutter W. J. 1973; A class I (Schiff base) fructose diphosphate aldolase of prokaryotic origin. Purification and properties of Micrococcus aerogenes aldolase. Journal of Biological Chemistry 248:1650–1659
    [Google Scholar]
  33. Lindmark D. G., Paolella P., Wood N. P. 1969; The pyruvate formate-lyase system of Streptococcus faecalis. I. Purification and properties of the formate-pyruvate exchange enzyme. Journal of Biological Chemistry 244:3605–3612
    [Google Scholar]
  34. Mcgill D. J., Dawes E. A. 1971; Glucose and fructose metabolism in Zymomonas anaerobia. Biochemical Journal 125:1059–1068
    [Google Scholar]
  35. Midgley M., Dawes E. A. 1973; The regulation of transport of glucose and methyl α-glucoside in Pseudomonas aeruginosa. Biochemical Journal 132:141–154
    [Google Scholar]
  36. Montiel F., Blumenthal H. J. 1965; Factors affecting the pathways of glucose catabolism and the tricarboxylic acid cycle in Staphylococcus aureus. Bacteriological Proceedings 77:
    [Google Scholar]
  37. Moore S., Stein W. H. 1948; Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry 176:367–388
    [Google Scholar]
  38. Nazar K., Heczko P. B., Pulverer G. 1977; Transduction of penicillin resistance together with ability to ferment mannitol and ribose in Staphylococcus epidermidis. Journal of General Microbiology 99:449–452
    [Google Scholar]
  39. Pan Y. L., Blumenthal H. J. 1962; Pathways of glucose catabolism of Staphylococcus aureus. Bacteriological Proceedings 70:
    [Google Scholar]
  40. Pelroy R. A., Whiteley H. R. 1971; Regulatory properties of acetokinase from Veillonella alcalescens. Journal of Bacteriology 105:259–267
    [Google Scholar]
  41. Pontremoli S., Grazi E. 1966; 6-Phosphogluconate dehydrogenase - crystalline. Methods in Enzymology 9:137–141
    [Google Scholar]
  42. Reed L. J., Willms C. R. 1966; Purification and resolution of the pyruvate dehydrogenase complex (Escherichia coli). I. Purification and properties of the pyruvate dehydrogenase complex. Methods in Enzymology 9:247–253
    [Google Scholar]
  43. Schleifer K. H., Kloos W. E. 1975; Isolation and characterization of staphylococci from human skin. I. Amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus and Staphylococcus xylosus. International Journal of Systematic Bacteriology 25:50–61
    [Google Scholar]
  44. Schleifer K. H., Kocur M. 1973; Classification of staphylococci based on chemical and biochemical properties. Archiv für Mikrobiologie 93:65–85
    [Google Scholar]
  45. Senior P. J., Dawes E. A. 1971; Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii. Biochemical Journal 125:55–66
    [Google Scholar]
  46. Sevag M. G., Swart E. A. 1947; Metabolism of pyruvic acid by bacteria. I. Alterations in enzyme activity of staphylococci when grown in the presence and absence of glucose. Archives of Biochemistry and Biophysics 13:401–413
    [Google Scholar]
  47. Snoswell A. M. 1959; Flavins of Lactobacillus arabinosus 17·5. A lactic dehydrogenase containing a flavin prosthetic group. Australian Journal of Experimental Biology and Medical Science 37:49–64
    [Google Scholar]
  48. Sokatch J. T., Gunsalus I. C. 1957; Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. Journal of Bacteriology 73:452–460
    [Google Scholar]
  49. Strasters K. C. 1962 De Koolhydraatstofwisseling van Staphylococcus aureus Ph.D. dissertation University of Utrecht:
    [Google Scholar]
  50. Strasters K. C., Winkler K. C. 1963; Carbohydrate metabolism of Staphylococcus aureus. Journal of General Microbiology 33:213–229
    [Google Scholar]
  51. Strecker H. J. 1955; Phosphoroclastic split of pyruvate, yielding formate (E. coli). Methods in Enzymology 1:476–478
    [Google Scholar]
  52. Theodore T. S., Schade A. L. 1965; Carbohydrate metabolism of iron-rich and iron-poor Staphylococcus aureus. Journal of General Microbiology 40:385–395
    [Google Scholar]
  53. Umbreit W. W., Burris R. H., Stauffer J. F. 1972 Manometric and Biochemical Techniques Minneapolis, Minnesota: Burgess Publishing Co;
    [Google Scholar]
  54. De Vries W., Gerbrandy S. J., Stouthamer A. H. 1967; Carbohydrate metabolism in Bifidobacterium bifidum. Biochimica et biophysica acta 136:415–425
    [Google Scholar]
  55. Westerfeld W. W. 1945; A colorimetric determination of blood acetoin. Journal of Biological Chemistry 161:495–502
    [Google Scholar]
  56. Willis A. T. 1977 In Anaerobic Bacteriology: Clinical and Laboratory Practice London & Boston: Butterworths;
    [Google Scholar]
  57. Wood W. A. 1971; Assay of enzymes representative of metabolic pathways. Methods in Microbiology 6A:411–424
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-118-1-143
Loading
/content/journal/micro/10.1099/00221287-118-1-143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error