1887

Abstract

The metabolic pathway for the reduction and incorporation of sulphate in strain NCIB 8944 has been elucidated and the control and regulation of the pathway is reported. Several enzymes of the sulphate metabolic pathway have been assayed in grown on different substrates. In addition, several enzymes have been purified and inhibitor studies conducted on them. Cysteine plays a primary role in the control of sulphur metabolism in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-118-1-73
1980-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/118/1/mic-118-1-73.html?itemId=/content/journal/micro/10.1099/00221287-118-1-73&mimeType=html&fmt=ahah

References

  1. Bandurski R. S., Wilson L. G., Squires C. L. 1956; The mechanism of ‘active sulfate’ formation.. Journal of the American Chemical Society 78:6408–6409
    [Google Scholar]
  2. Burnell J. N. 1975 Sulphur metabolism in Para- coccus denitrificans. D.Phil. thesis University of Oxford.:
    [Google Scholar]
  3. Burnell J. N., Whatley F. R. 1975; A new, rapid and sensitive assay for adenosine-5′-phosphosulphate (APS) kinase.. Analytical Biochemistry 68:281–288
    [Google Scholar]
  4. Burnell J. N., Whatley F. R. 1977a; Sulphur metabolism in Paracoccus denitrificans: purification, properties and regulation of serine transacetylase, O-acetylserine sulphydrylase and β-cystathionase.. Biochimica et biophysica acta 481:246–265
    [Google Scholar]
  5. Burnell J. N., Whatley F. R. 1977b; Sulphur metabolism in Paracoccus denitrificans-. purification, properties and regulation of cysteinyl- and methionyl-tRNA synthetase.. Biochimica et biophysica acta 481:266–278
    [Google Scholar]
  6. Burnell J. N., John P., Whatley F. R. 1975a; The reversibility of active transport in membrane vesicles of Paracoccus denitrificans.. Biochemical Journal 150:527–536
    [Google Scholar]
  7. Burnell J. N., John P., Whatley F. R. 1975b; Phosphate transport in membrane vesicles of Paracoccus denitrificans.. FEBS Letters 58:215–218
    [Google Scholar]
  8. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M. 1969; Proposal to reject the genus Hydrogenomonas: taxonomic implications.. International Journal of Systematic Bacteriology 19:375–390
    [Google Scholar]
  9. Dreyfuss J. 1964; Characterization of a sulfate and thiosulfate-transporting system in Salmonella typhimurium.. Journal of Biological Chemistry 239:2292–2297
    [Google Scholar]
  10. Ellis R. J. 1964; The site of end product inhibition of sulphate reduction in Escherichia coli.. Biochemical Journal 93:19P
    [Google Scholar]
  11. Jones-Mortimer M. C. 1968; Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli K12.. Biochemical Journal 110:597–602
    [Google Scholar]
  12. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A. 1968; The control of sulphate reduction in Escherichia coli by O-acetylserine.. Biochemical Journal 107:51–53
    [Google Scholar]
  13. Kline B. C., Schoenhard D. E. 1970; Biochemical characterization of sulphur assimilation by Salmonella pullorum.. Journal of Bacteriology 102:142–148
    [Google Scholar]
  14. Kredich N. M. 1971; Regulation of l-cysteine biosynthesis in Salmonella typhimurium: effects of growth on varying sulfur sources and O-acetyl-serine on gene expression.. Journal of Biological Chemistry 246:3474–3484
    [Google Scholar]
  15. Kredich N. M., Tomkins G. M. 1966; The enzymic synthesis of l-cysteine inEscherichia coli and Salmonella typhimurium.. Journal of Biological Chemistry 241:4955–4965
    [Google Scholar]
  16. Pardee A. B. 1959 In Regulation of Cell Metabolism, CIBA Foundation Symposium p. 295 Wolstenholme G. E. W., O’Connor C. M. Edited by London:: J. & A. Churchill.;
    [Google Scholar]
  17. Pasternak C. A. 1962; Control of sulphate activation in Escherichia coli and Bacillus subtilis.. Biochemical Journal 85:44–49
    [Google Scholar]
  18. Pasternak C. A., Ellis R. J., Jones-Mortimer M. C., Crichton C. E. 1965; The control of sulphate reduction in bacteria.. Biochemical Journal 96:270–275
    [Google Scholar]
  19. Shaw W. H., Anderson J. W. 1971; Assay of adenosine 5′-triphosphate sulfurylase by pyrophosphate exchange.. Plant Physiology 47:114–118
    [Google Scholar]
  20. Shaw W. H., Anderson J. W. 1972; Purification, properties and substrate specificities of ATP sulphurylase from spinach leaf tissue.. Biochemical Journal 111:237–247
    [Google Scholar]
  21. Yamamoto L. H., Segel I. H. 1966; The inorganic sulphate transport system of Penicillium chrysogenum.. Archives of Biochemistry and Biophysics 114:523–538
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-118-1-73
Loading
/content/journal/micro/10.1099/00221287-118-1-73
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error