1887

Abstract

USDA191 is a member of a new group of strains found in China. This strain is one of several strains shown to be salt-tolerant and fast-growing; it is unique in being the only strain of this group that effectively nodulates American soybean cultivars. For these reasons strain USDA191 was chosen for further study and comparison to the common American isolate USDA110. Strain USDA191 has a doubling time of 3.2 h in complex medium and grows in concentrations of up to 0·4 -NaCl, while strain USDA110, which has a doubling time of 12 h, is severely inhibited in media containing 0·1 -NaCl. Under salt stress conditions, intracellular levels of K and glutamate were shown to increase. A comparison based on carbohydrate metabolism, DNA homology and protein patterns on polyacrylamide gels reveals that strain USDA191 is more closely related to the fast-growing rhizobia than to However, the strain retains capacity to nodulate American soybean and cowpea cultivars effectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-5-1537
1983-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/5/mic-129-5-1537.html?itemId=/content/journal/micro/10.1099/00221287-129-5-1537&mimeType=html&fmt=ahah

References

  1. Balasubraminiam V., Sinha S. K. 1976; Effects of salt stress on growth, nodulation and nitrogen fixation in cowpea and mung bean. Physiologia Plantarum 36:197–200
    [Google Scholar]
  2. Bernstein L., Ogata G. 1966; Effects of salinity on nodulation, nitrogen fixation and growth of soybean and alfalfa. Agronomy Journal 68:201–203
    [Google Scholar]
  3. Bethlenfalvay G. J., Phillips D. A. 1977; Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes. Plant Physiology 60:419–421
    [Google Scholar]
  4. Brewin N. J., Beringer J. E., Johnston A. W. B. 1980; . Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. Journal of General Microbiology 120:413–420
    [Google Scholar]
  5. Britten R. J., Graham D. E., Neufeld B. R. 1974; Analysis of repeating DNA sequences by reassociation. Methods in Enzymology 29:363–418
    [Google Scholar]
  6. Casse F., Boucher C., Julliot J. S., Michel M., DÉnariÉ J. 1979; Identification and characterization of large plasmids in Rhizobium melilotiusing agarose gel electrophoresis. Journal of General Microbiology 113:229–242
    [Google Scholar]
  7. Davis R., Botstein D., Roth J. R. 1980; Rapid plasmid isolation from a 10 ml culture. In Advanced Bacterial Genetics pp. 124–125 New York:: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  8. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; DNA homologies among acid-producing strains of Rhizobium. International Journal of Systematic Bacteriology 31:152–172
    [Google Scholar]
  9. Dejong T. M., Phillips D. A. 1981; Nitrogen stress and apparent photosynthesis in symbiotically grown PisumsativumL. Plant Physiology 68:309–313
    [Google Scholar]
  10. Epstein W., Schultz S. G. 1965; Cation transport in Escherichia coli.V. Regulation of cation content. Journal of General Physiology 49:221–234 (No. 1 part II)
    [Google Scholar]
  11. Gibbins A. M., Gregory K. F. 1972; Relatedness among Rhizobiumand Agrobacteriumspecies determined by three methods of nucleic acid hybridization. Journal of Bacteriology 111:129–141
    [Google Scholar]
  12. Graham P. H. 1964; Studies on the utilization of carbohydrates and Krebs cycle intermediates by Rhizobiausing an agar plate method. Antonie van Leeuwenhoek 30:68–72
    [Google Scholar]
  13. Graham P. H., Parker C. A. 1964; Diagnostic features in the characterization of the root-nodule bacteria of legumes. Plant and Soil 20:383–396
    [Google Scholar]
  14. Hollis A. B., Kloos W. E., Elkan G. H. 1981; DNA:DNA hybridization studies of Rhizobium japonicumand related Rhizobiaceae. Journal of General Microbiology 123:214–222
    [Google Scholar]
  15. Hooykaas P. J. J., Van Bressel A. A. N., Den Dulkras H., Van Sloyteren G. M. S., Schilperoort R. A. 1981; Sym plasmid of Rhizobium trifoliiexpressed in different rhizobial species and Agrobacterium tumefaciens. Nature; London: 291351–353
    [Google Scholar]
  16. Hua S. S., Scott D. B., Lim S. T. 1981; A mutant of Rhizobium japonicumwith elevated levels of Nifactivity in free-living cultures. In Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen pp. 95–105 Lyons J. M., Valentine R. C., Phillips D. A., Rains D. W., Huffaker R. C. Edited by New York:: Plenum Press.;
    [Google Scholar]
  17. Hua S. T., Tsai V. Y., Lichens G. M., Noma A. T. 1982; Accumulation of amino acids in Rhizobium sp. strain WR110 in response to sodium chloride salinity. Applied and Environmental Microbiology 44:135–140
    [Google Scholar]
  18. Jarvis B. D. W., Dick A. G., Greenwood R. M. 1980; Deoxyribonucleic acid homology among strains of Rhizobium trifoliiand related species. International Journal of Systematic Bacteriology 30:42–52
    [Google Scholar]
  19. Johnston A. W. B., Beynon J. L., Buchanan-Wollaston A. V., Setchell S. M., Hirsch P. R., Beringer J. E. 1978; High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature; London: 276634–636
    [Google Scholar]
  20. Kado C. I., Lui S.-T. 1980; Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145:1365–1373
    [Google Scholar]
  21. Keyser H. H., Bohlool B. B., Hu T. S., Weber D. F. 1982; Fast-growing Rhizobia isolated from root nodules of soybean. Science 215:1631–1632
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  23. Lim S. T. 1978; Determination of hydrogenase in free-living cultures of Rhizobium japonicumand energy efficiency of soybean nodules. Plant Physiology 62:609–611
    [Google Scholar]
  24. Martinez De-Drets G., Arias A. 1972; Enzymatic basis for the differentiation of Rhizobiuminto fast and slow-growing groups. Journal of Bacteriology 109:467–470
    [Google Scholar]
  25. Measures J. C. 1975; Role of amino acids in osmoregulation of non-halophilic bacteria. Nature; London: 257298–400
    [Google Scholar]
  26. Rigby P. W., Dieckmann M., Rhodes C., Berg R. 1977; Labeling deoxyribonucleic acid to high specific activity in vitroby nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  27. Roberts G. P., Leps W. T., Silver L. E., Brill W. J. 1980; Use of two-dimensional polyacrylamide gel electrophoresis to identify and classify Rhizobium strains. Applied Environmental Microbiology 29:414–422
    [Google Scholar]
  28. Sanui H., Pace N. 1968; Chemical and ionization interference in the atomic absorption spectrophoto-metric measurement of sodium, potassium, rubidium and cesium. Analytical Biochemistry 25:330–346
    [Google Scholar]
  29. Schubert K. R., Evans H. J. 1976; Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated legumes. Proceedings of the National Academy of Sciences of the United States of America 73:1207–1211
    [Google Scholar]
  30. Scott D. B., Hennecke H., Lim S. T. 1979; The biosynthesis of nitrogenaseMoFe protein polypeptides in free-living cultures of Rhizobium japonicum. Biochimica et biophysica acta 565:365–378
    [Google Scholar]
  31. Steinborn J., Roughly R. J. 1974; Sodium chloride as a cause of low numbers of Rhizobiumin legume inoculants. Journal of Applied Bacteriology 37:93–99
    [Google Scholar]
  32. Steinborn J., Roughly R. J. 1975; Toxicity of Na+ and Cl to Rhizobiumspp.in broth and peat cultures. Journal of Applied Bacteriology 39:133–138
    [Google Scholar]
  33. Timberlake W. E., Shumard D. S., Goldberg R. B. 1977; Relationship between nuclear and polysomal RNA populations of Achlya:a simple eucaryotic system. Cell 10:623–632
    [Google Scholar]
  34. Trinick M. J. 1980; Relationships amongst the fastgrowingRhizobiaof Lablab purpureus, Leucaena levcocephala, Mimosaspp, Acacia farnesianaand Sesbania grandifloraand their affinity with other rhizobial groups. Journal of Applied Bacteriology 49:39–53
    [Google Scholar]
  35. Upchurch R. G., Elkan G. H. 1977; Comparison of colony morphology, salt tolerance and effectiveness in Rhizobium japonicum. Canadian Journal of Microbiology 23:1118–1122
    [Google Scholar]
  36. Vincent J. M. 1970 A Manual for the Practical Study of Root-nodule Bacteria. Oxford:: Blackwell Scientific Publications.;
    [Google Scholar]
  37. Vincent J. M. 1977; Rhizobium: general microbiology. In A Treatise on Dinitrogen Fixation (section 111) pp. 277–366 Hardy R. W. F., Silver W. S. Edited by New York:: John Wiley.;
    [Google Scholar]
  38. Williams L. E., Phillips D. A. 1980; Effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiology 66:968–972
    [Google Scholar]
  39. Wilson J. R., Norris D. O. 1970; Some effects of salinity on Glycine javanicaand its Rhizobium symbiosis. Proceedings of the 11th International Grasslands Conference pp. 455–458
    [Google Scholar]
  40. Yadav M. K., Vyvas S. R. 1971; Response of root-nodule rhizobia to saline, alkaline and acid conditions. Indian Journal of Science 41:875–881
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-129-5-1537
Loading
/content/journal/micro/10.1099/00221287-129-5-1537
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error