1887

Abstract

Summary: Expression of the mercury-resistance () genes of the transposon Tn is positively and negatively controlled by the product of the gene. DNA sequence analysis has identified three open reading frames as potential candidates for this gene, one of which is oriented divergently with respect to the mercury-resistance genes. We have demonstrated that although RNA polymerase will bind to fragments containing the potential control regions for all three reading frames, only the control region for this divergent reading frame shows detectable promoter activity Transcription of this reading frame is required for repression and induction of transcription. We have also shown that the Tn gene product negatively regulates its own synthesis, and have identified the start point of the transcript for this reading frame and for the mercury-inducible transcript of the mercury-resistance genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-2-465
1986-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/2/mic-132-2-465.html?itemId=/content/journal/micro/10.1099/00221287-132-2-465&mimeType=html&fmt=ahah

References

  1. Adams C. W., Hatfield G. W. 1984; Effects of promoter strengths and growth conditions on copy number of transcription-fusion vectors. Journal of Biological Chemistry 12:7399–7403
    [Google Scholar]
  2. Alton N. K., Vapnek D. 1979; Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature, London 282:868–869
    [Google Scholar]
  3. Anderson W. F., Ohlendorf D. M., Takeda Y., Matthews B. W. 1981; Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature, London 290:754–758
    [Google Scholar]
  4. Barrineau P., Gilbert P., Jackson W. J., Jones C. S., Summers A. O., Wisdom S. 1985; The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. Journal of Molecular and Applied Genetics 2:601–619
    [Google Scholar]
  5. Berk A. J., Sharp P. A. 1977; Sizing and mapping of early adenovirus mRN As by gel electrophoresis of SI endonuclease digested hybrids. Cell 12:721–732
    [Google Scholar]
  6. de Boer H. A., Comstock L. J., Vasser M. 1983; The tac promoter: a functional hybrid developed from the trp and lac promoters. Proceedings of the National Academy of Sciences of the United States of America 80:21–25
    [Google Scholar]
  7. Bohlander F. A., Summers A. O., Meagher R. B. 1981; Cloning a promoter that puts the expression of tetracycline resistance under the control of the regulatory elements of the mer operon. Gene 15:395–403
    [Google Scholar]
  8. Brown N. L. 1985; Bacterial resistance to mercury: reductio ad absurdum?. Trends in Biochemical Sciences 10:400–403
    [Google Scholar]
  9. Brown N. L., Ford S. J., Pridmore R. D., Fritzinger D. C. 1983; Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22:4089–4095
    [Google Scholar]
  10. Burgess R. R. 1969; A new method for the large-scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. Journal of Biological Chemistry 244:6160–6167
    [Google Scholar]
  11. Burgess R. R., Jendrisak J. J. 1975; A procedure for the rapid, large scale purification of Escherichia coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA-cellulose chromatography. Journal of Biological Chemistry 14:4636–4638
    [Google Scholar]
  12. Chang A. C. Y., Cohen S. N. 1978; Construction and characterisation of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of Bacteriology 134:1141–1156
    [Google Scholar]
  13. Clewell D. B., Helinski D. R. 1969; Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an open circular form. Proceedings of the National Academy of Sciences of the United States of America 62:1159–1166
    [Google Scholar]
  14. Dagert M., Ehrlich S. D. 1979; Prolonged incubation in calcium chloride improves the competence of Escherichia coli. Gene 6:23–28
    [Google Scholar]
  15. Ford S. J. 1981; Gene expression in the mercury resistance transposon Tn501. PhD thesis,. University of Bristol, UK
    [Google Scholar]
  16. Foster T. J., Brown N. L. 1985; Identification of the merR gene using mer-lac gene and operon fusions. Journal of Bacteriology 163:1153–1157
    [Google Scholar]
  17. Foster T. J., Ginnity F. 1985; Some mercurial resistance plasmids from different incompatibility groups specify merR regulatory functions that both repress and induce the mer operon of plasmid R100. Journal of Bacteriology 162:773–776
    [Google Scholar]
  18. Foster T. J., Nakahara H., Weiss A. A., Silver S. 1979; Transposon A generated mutations in the mercuric resistance gene of plasmid R100. Journal of Bacteriology 140:167–181
    [Google Scholar]
  19. Hahn S., Schlief R. 1983; In vivo regulation of the Escherichia coli araC promoter. Journal of Bacteriology 155:593–600
    [Google Scholar]
  20. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter sequences. Nucleic Acids Research 11:2237–2255
    [Google Scholar]
  21. Ish-Horowicz D., Burke J. F. 1981; Rapid and efficient cosmid cloning. Nucleic Acids Research 9:2989–2998
    [Google Scholar]
  22. Jackson W. J., Summers A. O. 1982; Polypeptides encoded by the mer operon. Journal of Bacteriology 149:479–487
    [Google Scholar]
  23. Jones B. B., Chan H., Rothstein S., Wells R. D., Reznikoff W. S. 1977; RNA polymerase binding sites in lambda-p/ac5 DNA. Proceedings of the National Academy of Sciences of the United States of America 74:4914–4918
    [Google Scholar]
  24. Lambert P. F., Reznikoff W. S., Rothstein S. 1985; Use of transcriptional repressors to stabilise plasmid copy number of transcriptional fusion vectors. Journal of Bacteriology 162:441–444
    [Google Scholar]
  25. McFall E., Heincz M. C. 1983; dentification and control of synthesis of the dsdC activator protein. Journal of Bacteriology 153:872–877
    [Google Scholar]
  26. McKay D. B., Steitz T. A. 1981; Structure of catabolite gene activator protein at 2⋅9 Å resolution suggests binding to left-handed DNA. Nature, London 290:744–749
    [Google Scholar]
  27. McLachlan A. D. 1977; Quantum chemistry and protein folding: the art of the possible. International Journal of Quantum Chemistry12, supplement 1:371–385
    [Google Scholar]
  28. Maniatis T., Fritsch E. F., Sambrook J. 1982; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. Molecular Cloning: A Laboratory Manual.
    [Google Scholar]
  29. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base-specific chemical cleavages. Methods in Enzymology 65:449–560
    [Google Scholar]
  30. Melancon P., Burgess R. R., Record M. T., Jr. 1982; Nitrocellulose filter binding studies of Escherichia coli RNA polymerase holoenzyme with deoxyribonucleic acid restriction fragments: evidence for multiple classes of nonpromoter interactions, some of which display promoter-like properties. Biochemistry 21:4318–4331
    [Google Scholar]
  31. Messing J. 1979; A multi-purpose cloning system based on the single-stranded bacteriophage M13. Recombinant DNA Technical Bulletin 2:43–48
    [Google Scholar]
  32. Miller J. H. 1972; Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. Experiments in Molecular Genetics. 2:43–48
    [Google Scholar]
  33. Misra T. K., Brown N. L., Fritzinger D., Pridmore R. D., Barnes W. M., Haberstroh L., Silver S. 1984; Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. Proceedings of the National Academy of Sciences of the United States of America 81:5975–5979
    [Google Scholar]
  34. Misra T. K., Brown N. L., Haberstroh L., Schmidt A., Goddette D., Silver S. 1985; Sequence of mercuric reductase structural genes from plasmid R100 and transposon Tn501: functional domains of the enzyme. Gene 34:253–262
    [Google Scholar]
  35. Ni’Bhriain N. N. 1985; Molecular genetic analysis of the merucric ion resistance (mer) operon of plasmid R100. PhD thesis, Trinity College, University of Dublin, Ireland.
    [Google Scholar]
  36. Ni’Bhriain N. N., Silver S., Foster T. J. 1983; Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. Journal of Bacteriology 155:690–703
    [Google Scholar]
  37. Nisioka T., Mitani M., Clewes R. C. 1969; Composite circular forms of R factor deoxyribonucleic acid molecules. Journal of Bacteriology 97:376–385
    [Google Scholar]
  38. Ogden S., Haggerty C. M., Stoner D., Kolodnibetz D., Schlief R. 1980; The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proceedings of the National Academy of Sciences of the United States of America 77:3346–3350
    [Google Scholar]
  39. Pabo C. O., Lewis M. 1982; The operator-binding domain of lambda repressor: structure and DNA recognition. Nature, London 298:443–447
    [Google Scholar]
  40. Pabo C. O., Sauer R. T. 1984; Protein-DNA recognition. Annual Review of Biochemistry 53:293–322
    [Google Scholar]
  41. Pestka S.,., Daugherty B. L., Jung V., Hotta K., Pestka R. K. 1984; Anti-mRNA: specific inhibition of translation of mRNA molecules. Proceedings of the National Academy of Sciences of the United States of America 81:7525–7528
    [Google Scholar]
  42. Raibaud O., Schwarz M. 1984; Positive control of transcription in bacteria. Annual Review of Genetics 18:173–206
    [Google Scholar]
  43. Robinson J. B., Tuovinen O. H. 1984; Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical and genetic analyses. Microbiological Reviews 48:95–124
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  45. Silver S., Misra T. K. 1984; Bacterial transformations of and resistance to heavy metals. Edited by G. S. Omenn & A. Hollander. New York & London: Plenum Press. In Genetic Control of Environmental Pollutants, pp:23–46
    [Google Scholar]
  46. Silverstone A. E., Arditti R. R., Magasanik B. 1970; Catabolite insensitive revertants of lac promoter mutants. Proceedings of the National Academy of Sciences of the United States of America 66:773–779
    [Google Scholar]
  47. Stragier P., Patte J.-C., Magasanik B. 1983; Regulation of diaminopimelate synthesis in Escherichia coli. III. Nucleotide sequence and regulation of the lysR gene. Journal of Molecular Biology 168:333–350
    [Google Scholar]
  48. Stuber D., Bujard H. 1981; Organisation of transcriptional signals in plasmids pBR322 and pACYC184. Proceedings of the National Academy of Sciences of the United States of America 78:167–171
    [Google Scholar]
  49. Summers A. O., Silver S. 1981; Microbial transformations of metals. Annual Review of Microbiology 32:637–672
    [Google Scholar]
  50. Wilcox G., Boulter J., Lee N. 1974; Direction of transcription of the regulatory gene araC in Escherichia coli B/r. Proceedings of the National Academy of Sciences of the United States of America 71:3635–3639
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-2-465
Loading
/content/journal/micro/10.1099/00221287-132-2-465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error