1887

Abstract

Procedures are described for the selection of mutants that constitutively take up and phosphorylate fructose, and convert it to fructose 1,6-bisphosphate. The phenotype of such mutants is described. The altered regulatory gene, , is highly co-transducible with and other markers located at min 2 on the genome. In merozygotes, is dominant to . Mutants can be readily isolated that are at 42 °C but at 30 °C; moreover, the integration of a Tn transposon in the genome at min 2converts strains to . It is therefore likely that the regulatory gene specifies a repressor protein.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-133-2-341
1987-02-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/133/2/mic-133-2-341.html?itemId=/content/journal/micro/10.1099/00221287-133-2-341&mimeType=html&fmt=ahah

References

  1. Amaral D., Kornberg H. L. 1975; Regulation of fructose uptake by glucose in Escherichia coli . Journal of General Microbiology 90:157–168
    [Google Scholar]
  2. Ashworth J. M., Kornberg H. L. 1966; The anaplerotic fixation of carbon dioxide by Escherichia coli . Proceedings of the Royal Society B 165:179–188
    [Google Scholar]
  3. Bachmann B. J. 1983; Linkage map of Escherichia coli K-12,. , edition 7.. Microbiological Reviews 47:180–230
    [Google Scholar]
  4. Benner D., Muller N., Boos W. 1985; Temperature-sensitive catabolite activator protein in Escherichia coli BUG 6. Journal of Bacteriology 161:347–352
    [Google Scholar]
  5. Böck A., Neidhardt F. C. 1966; Properties of a mutant of Escherichia coli with a temperature- sensitive fructose 1,6-diphosphate aldolase. Journal of Bacteriology 92:470–476
    [Google Scholar]
  6. Bolshakova T. N., Dobrynina O. Y., Gershanovitch V. N. 1979; Isolation and investigation of the Escherichia coli mutant with the deletion in the ptsH gene. FEBS Letters 107:169–172
    [Google Scholar]
  7. Cozzarelli N. R., Koch J. P., Hayashi S., Lin E. C. C. 1965; Growth stasis by accumulated L-a- glycerophosphate in Escherichia coli . Journal of Bacteriology 90:1325–1329
    [Google Scholar]
  8. Englesberg E., Anderson R. L., Weinberg R., Lee N., Hoffee P., Huttenhauer G., Boyer H. 1962; L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli . Journal of Bacteriology 84:137–146
    [Google Scholar]
  9. Ferenci T., Kornberg H. L. 1971a; Pathway of fructose utilization by Escherichia coli . FEBS Letters 13:127–130
    [Google Scholar]
  10. Ferenci T., Kornberg H. L. 1971b; Role of fructose 1,6-diphosphatase in fructose utilization by Escherichia coli . FEBS Letters 14:360–364
    [Google Scholar]
  11. Ferenci T., Kornberg H. L. 1973; The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochemical Journal 132:341–347
    [Google Scholar]
  12. Ferenci T., Kornberg H. L. 1974; The role of phosphotransferase-mediated syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose. Proceedings of the Royal Society B 187:105–119
    [Google Scholar]
  13. Fraenkel D. G. 1968; The phosphoenolpyruvate- initiated pathway of fructose metabolism in Escherichia coli . Journal of Biological Chemistry 243:645–86463
    [Google Scholar]
  14. Geerse R. H., Ruig C. R., Schuitema A. R. J., Postma P. 1986; Relationship between pseudo- HPr and the PEP:fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli . Molecular and General Genetics 203:435–444
    [Google Scholar]
  15. Jones-Mortimer M. C., Kornberg H. L. 1974; Genetical analysis of fructose utilization by Escherichia coli . Proceedings of the Royal Society B 187:121–131
    [Google Scholar]
  16. Kornberg H. L. 1972; Nature and regulation of hexose uptake by Escherichia coli . In The Molecular Basis of Biological Transport pp. 157–180 Woessner J. W. JR Huijing F. Edited by New York & London: Academic Press;
    [Google Scholar]
  17. Kornberg H. L. 1973; Fine control of sugar uptake by Escherichia coli . Symposia of the Society for Experimental Biology 27:175–193
    [Google Scholar]
  18. Kornberg H. L. 1986; The roles of HPr and FPr in the utilization of fructose by Escherichia coli . FEBS Letters 194:12–15
    [Google Scholar]
  19. Kornberg H. L., Reeves R. E. 1972; Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli . Biochemical Journal 128:1339–1344
    [Google Scholar]
  20. Kurahashi K., Wahba A. J. 1958; Interference with growth of certain Escherichia coli mutants by galactose. Biochimica et biophysica acta 30:298–302
    [Google Scholar]
  21. London J., Hausman S. 1982; Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei . Journal of Bacteriology 150:657–661
    [Google Scholar]
  22. Magasanik B. 1961; Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology 26:249–254
    [Google Scholar]
  23. Mcginnis J. F., Paigen K. 1969; Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization. Journal of Bacteriology 100:902–913
    [Google Scholar]
  24. Mcginnis J. F., Paigen K. 1973; Site of catabolite inhibition of carbohydrate metabolism. Journal of Bacteriology 114:885–887
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.;
    [Google Scholar]
  26. Reiner A. M. 1977; Xylitol and D-arabitol toxicities due to derepressed fructose, galactitol and sorbitol phosphotransferases of Escherichia coli . Journal of Bacteriology 132:166–173
    [Google Scholar]
  27. Saier M. H., Simoni R. D., Roseman S. 1970; The physiological behaviour of Enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system. Journal of Biological Chemistry 245:5870–5873
    [Google Scholar]
  28. Saier M. H., Simoni R. D., Roseman S. 1976; Sugar transport. Properties of bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Journal of Biological Chemistry 251:6584–6597
    [Google Scholar]
  29. Solomon E., Lin E. C. C. 1972; Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. Journal of Bacteriology 111:566–574
    [Google Scholar]
  30. Waygood E. B. 1980; Resolution of the phosphoenolpyruvate : fructose phosphotransferase system of Escherichia coli into two components: enzyme II fructose and fructose-induced HPr-like protein (FPr). Canadian Journal of Biochemistry 58:1144–1146
    [Google Scholar]
  31. Waygood E. B., Meadow N. D., Roseman S. 1979; Modified assay procedure for the phosphotransferase system in enteric bacteria. Analytical Biochemistry 95:293–304
    [Google Scholar]
  32. Waygood E. B., Mattoo R. L., Peri K. G. 1984; Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli.Evidence for mannose, jjjFructose^ jjjGiucuoi^ ancj the phosphorylation of Enzyme HManmto1 and Enzyme n^-A"tyigiucosamine. Journal of Cellular Biochemistry 25:139–159
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-133-2-341
Loading
/content/journal/micro/10.1099/00221287-133-2-341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error