1887

Abstract

Wall-deficient forms of fast-growing mycobacteria were produced in growth medium containing vancomycin and glycine, and spheroplasts were prepared by lysozyme treatment of wall-deficient cells. Spheroplasts gave rise to recombinants with high frequency (2-6%) when they were fused using polyethylene glycol 6000. The results demonstrated that genetic recombination could be used to produce genetically modified strains with applications in transformation of steroids. Useful intermediates of steroid drug synthesis and new degradation products were obtained from sterols by selected recombinant strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-6-1727
1989-06-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/6/mic-135-6-1727.html?itemId=/content/journal/micro/10.1099/00221287-135-6-1727&mimeType=html&fmt=ahah

References

  1. Adámek L., MiŠon P., Mohelská H., Trnka L. 1969; Ultrastructural organization of spheroplasts induced in Mycobacterium sp. smegmatis by lysozyme or glycine. Archiv für Mikrobiologie 69:227–236
    [Google Scholar]
  2. Ambrus G., Büki K.G. 1969; Degradation of sapogenins by Mycobacterium phlei.. Steroids 13:623–625
    [Google Scholar]
  3. Baltz R.H. 1978; Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. Journal of General Microbiology 107:93–102
    [Google Scholar]
  4. Baltz R.H., Matsushima P. 1981; Protoplast fusion in Streptomyces: conditions for efficient genetic recombination and cell regeneration. Journal of General Microbiology 127:137–146
    [Google Scholar]
  5. Dodson R.M., Muir R.D. 1961; Microbiological transformations. VII. The hydroxylation of steroids at C-9. Journal of the American Chemical Society 83:4631–4635
    [Google Scholar]
  6. Dorozhkova I.R., Volk A.V. 1972; Induction rate of L-form in Mycobacterium tuberculosis under the effect of cycloserine and its combinations with other drugs. Antibiotiki 17:838–844
    [Google Scholar]
  7. Fujimoto Y., Chen C.-S., Szeleczky Z., Di Tullio D., Sih C. J. 1982a; Microbial degradation of the phytosterol side chain. 1. Enzymatic conversion of 3-oxo-24-ethylcholest-4-en-26-oic acid into 3-oxo- chol-4-en-24-oic acid and androst-4-ene-3,17-dione. Journal of the American Chemical Society 104:4718–4720
    [Google Scholar]
  8. Fujimoto Y., Chen C.-S., Gopalan A. S., Sih C. J. 1982b; Microbial degradation of the phytosterol side chain. 2. Incorporation of NaH14C03 onto the C-28 position. Journal of the American Chemical Society 104:4720–4722
    [Google Scholar]
  9. Habets-Crutzen A.Q.H., Carlier S.J.N., De Bont J.A.M., Wistuba D., Schurig V., Hartmans S., Tramper J. 1985; Stereospecific formation of 1,2-epoxypropane, 1,2-epoxy butane and l-chloro-2,3-epoxypropane by alkene-utilizing bacteria. Enzyme and Microbial Technology 7:17–21
    [Google Scholar]
  10. Hopwood D.A., Bibb J.M., Chater K.F., Kieser T., Bruton C.J., Kieser M.M., Lydiate D.J., Smith C.P., Ward J.M., Schrempf H. 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  11. Hopwood D.A., Wright H.M., Bibb M.J., Cohen S.N. 1977; Genetic recombination through protoplast fusion in Streptomyces.. Nature, London 268:171–174
    [Google Scholar]
  12. Kieslich K. 1985; Microbial side-chain degradation of sterols. Journal of Basic Microbiology 25:461–474
    [Google Scholar]
  13. Knight J.C., Wovcha M.G. 1980; Microbial degradation of the phytosterol side-chain to 24-oxo- products. Steroids 36:723–730
    [Google Scholar]
  14. Knight J.C., Wovcha M.G. 1984; Isolation and quantitation of 9-hydroxy-3-oxo-23,24-dinor- 4,17(20)-choladien-22-al from a sitosterol bioconversion. In Advances in Steroid Analysis ’84 pp. 479–484 Görög S. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  15. Koniček J., Koničkova-Radochová M. 1975; Possibilities of the conjugation process in mycobacteria. Folia microbiologica 20:382–388
    [Google Scholar]
  16. Marsheck W.J., Kraychy S., Muir R.D. 1972; Microbial degradation of sterols. Applied Micro-biology 23:72–77
    [Google Scholar]
  17. Mizuguchi Y., Tokunaga T. 1971; Recombination between Mycobacterium smegmatis strains Jucho and Lacticola. Japanese Journal of Microbiology 15:359–366
    [Google Scholar]
  18. Okanishi M., Suzuki K., Umezawa H. 1974; Formation and reversion of streptomycete protoplasts: culture conditions and morphological study. Journal of General Microbiology 80:389–400
    [Google Scholar]
  19. Rastogi N., David H.L. 1981; Ultrastructural and chemical studies on wall-deficient forms, sphero- plasts and membrane vesicles from Mycobacterium aurum.. Journal of General Microbiology 124:71–79
    [Google Scholar]
  20. Rastogi N., Lévy-Frébault V., David H.L. 1983a; Spheroplast formation from nine rapidly- growing mycobacteria. Current Microbiology 9:201–204
    [Google Scholar]
  21. Rastogi N., David H.L., Rafidinarivo E. 1983b; Spheroplast fusion as a mode of genetic recombination in mycobacteria. Journal of General Microbiology 129:1227–1237
    [Google Scholar]
  22. Rastogi N., Rauzier J.Y., Papa F.P., David H.L. 1986; Biochemical and cultural analysis of mycobacterial recombinants obtained by spheroplast fusion. Annales de microbiologie 137A:135–142
    [Google Scholar]
  23. Reynolds E.S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 32:27
    [Google Scholar]
  24. Sato H., Diena B.B., Greenberg L. 1965; Spheroplast induction and lysis of BCG strains by glycine and lysozyme. Canadian Journal of Microbiology 12:255–261
    [Google Scholar]
  25. Schubert K., Böhme K.-H., Hörhold C. 1961; Bildung einer Katosaure durch mikrobiellen Abbau von Progesteron. Hoppe-Seyler’s Zeitschrift für Phy- siologische Chemie 325:260–262
    [Google Scholar]
  26. Siewert G., Strominger J.L. 1967; Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in biosynthesis of the peptidoglycan of bacterial cell walls. Proceedings of the National Academy of Sciences of the United States of America 57:767–773
    [Google Scholar]
  27. Strominger L., Birge C.H. 1965; Nucleotide accumulation induced in Staphylococcus aureus by glycine. Journal of Bacteriology 89:1124–1127
    [Google Scholar]
  28. Thacore H., Willett H.P. 1963; Formation of spheroplasts of Mycobacterium tuberculosis by lyso-zyme treatment. Proceedings of the Society for Experimental Biology and Medicine 114:43–47
    [Google Scholar]
  29. Van Rheenen V., Shephard K.P. 1979; New synthesis of corticosteroids from 17-keto steroids: application and stereochemical study of the unsaturated sulfoxide-sulfonate rearrangement. Journal of Organic Chemistry 44:1582–1584
    [Google Scholar]
  30. Wix GY., Büki K.G., Tömörkeny E., Ambrus G. 1968; Inhibition of steroid nucleus degradation in mycobacterial transformations. Steroids 11:401–413
    [Google Scholar]
  31. Wovcha M.G., Antosz F.J., Knight J.C., Kominek L.A., Pyke T.R. 1978; Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum.. Biochimica et biophysica acta 531:308–321
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-6-1727
Loading
/content/journal/micro/10.1099/00221287-135-6-1727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error