1887

Abstract

Polynucleotide phosphorylase has been purified from the cyanobacterium sp. MAC. The enzyme requires a divalent cation such as Mg, has a pH optimum of 10·5 and catalyses the polymerization of ADP into polynucleotide in a primer-independent reaction at a rate of 2 mol min (mg protein). It has an apparent native of 215000–240000. Non-denaturing polyacrylamide activity gels reveal a heterogeneous pattern of active bands similar to those previously observed with the corresponding enzyme from , while SDS-denaturing activity gels reveal a single band of activity of 91000 in both crude extracts and the most highly purified fraction. Activity has also been demonstrated in a cetyltrimethyl-ammonium bromide non-denaturing activity gel. By analogy with other known polynucleotide phosphorylases, the enzyme is probably a trimer of the 91000- subunit.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-135-7-2045
1989-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/135/7/mic-135-7-2045.html?itemId=/content/journal/micro/10.1099/00221287-135-7-2045&mimeType=html&fmt=ahah

References

  1. Akin D.T., Shapiro R., Kinrade J.M. 1985; The determination of molecular weights of biologically active proteins by cetyltrimethylammonium bromide-polyacrylamide gel electrophoresis.. Analytical Biochemistry 145:170–176
    [Google Scholar]
  2. Allen M.M. 1968; Simple conditions for growth of unicellular blue-green algae on plates.. Journal of Phycology 4:1–4
    [Google Scholar]
  3. Barbehenn E.K., Klee C.B. 1978; The origin of the electrophoretic microheterogeneity in primer- independent polynucleotide phosphorylase from Micrococcus luteus.. Journal of Biological Chemistry 253:2446–2454
    [Google Scholar]
  4. Barbehenn E.K., Craine J.E., Chrambach A., Klee C.B. 1982; Characterisation of polynucleotide phosphorylase from Micrococcus luteus and isolation of the 13,000 base poly(A) product of the polymerisation reaction.. Journal of Biological Chemistry 257:1007–1016
    [Google Scholar]
  5. Bertazzoni U., Scovassi A.I., Mezzina M., Sarasin A., Franchi E., Izzo R. 1986; Activity gels for analysing DNA processing enzymes.. Trends in Genetics 2:67–72
    [Google Scholar]
  6. Bonen L., Allen G.V., Dobson P.R., Doolittle W.F. 1976; Nonribosomal nature of novel stable ribonucleic acid species accumulated by blue-green bacteria.. Journal of Bacteriology 126:1020–1023
    [Google Scholar]
  7. Donovan W.P., Kushner S.R. 1983; Cloning and physical analysis of the pyrF gene (coding for orotidine 5´-phosphate decarboxylase) from Eschericia coli K-12.. Gene 25:39–48
    [Google Scholar]
  8. Donovan W.P., Kushner S.R. 1986; Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12.. Proceedings of the National Academy of Sciences of the United States of America 83:120–124
    [Google Scholar]
  9. Gajda A.T., Zaror De Behrens G., Fitt P.S. 1971; Preparation, proteolysis and reversible oxidation of highly purified Azotobacter vinelandii polynucleotide phosphorylase.. Biochemical Journal 120:753–761
    [Google Scholar]
  10. Godefroy-Colburn T., Grunberg-Manago M. 1972; Polynucleotide phosphorylase.. In The Enzymes 7 pp 533–574 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  11. Grunberg-Manago M., Ochoa S. 1955; Enzymatic synthesis and breakdown of polynucleotides; polynucleotide phosphorylase.. Journal of the American Chemical Society 77:3165–3166
    [Google Scholar]
  12. Hames B.D. 1981; An introduction to polyacrylamide gel electrophoresis.. In Gel Electrophoresis of Proteins: a Practical Approach, pp 1–91 Hames B. D., Rickwood D. Edited by Oxford: IRL Press;
    [Google Scholar]
  13. Harry K., Sharma N., Fitt P.S. 1985; Preparation and properties of highly purified Vibrio costicola polynucleotide phosphorylase.. Biochimica et biophysica acta 828:29–38
    [Google Scholar]
  14. Karawya E., Swack J., Albert W., Fedorko J., Minna J.D., Wilson S.H. 1984; Identification of a higher molecular weight DNA polymerase-a catalytic polypeptide in monkey cells by monoclonal antibody.. Proceedings of the National Academy of Sciences of the United States of America 81:7777–7781
    [Google Scholar]
  15. Kratz W.A., Myers J. 1955; Nutrition and growth of several blue-green algae.. American Journal of Botany 42:282–287
    [Google Scholar]
  16. Leroy C., Stussi-Garaud C., Hirth L. 1977; RNA-dependent RNA polymerases in uninfected and in alfalfa mosaic virus-infected tobacco plants.. Virology 82:48–62
    [Google Scholar]
  17. Littauer U.Z., Soreq H. 1982; Polynucleotide phosphorylase.. In The Enzymes 15:, 3rd edn. pp. 517–553 Boyer P. D. Edited by New York: Academic Press;
    [Google Scholar]
  18. Mejbaum-Katzenellenbogen W., Dobryszycka W.M. 1959; New method for quantitative determination of serum proteins separated by paper electrophoresis.. Clinica chimica acta 4:515–522
    [Google Scholar]
  19. Nolden W.-T., Richter G. 1982; Polynucleotide phosphorylase from a cyanobacterium (Synechococcus sp.): subunit composition and properties.. Zeitschrift für Naturforschung 37c:600–608
    [Google Scholar]
  20. Portier C. 1975; Quaternary structure of polynucleotide phosphorylase from Escherichia coli: evidence of a complex between two types of polypeptide chains.. European Journal of Biochemistry 55:573–582
    [Google Scholar]
  21. Singer R.A., Doolittle W.F. 1974; Novel ribonucleic acid species accumulated in the dark in the blue-green alga Anacystisnidulans.. Journal of Bacteriology 118:351–357
    [Google Scholar]
  22. Stanier R.Y., Cohen-Bazire G. 1977; Phototrophic prokaryotes: the cyanobacteria.. Annual Review of Microbiology 31:225–274
    [Google Scholar]
  23. Suranyi G., Korcz A., Palfi Z., Borbely G. 1987; Effects of light deprivation on RNA synthesis, accumulation of guanosine 3´(2´)-diphosphate 5´- diphosphate and protein synthesis in heat-shocked Synechococcus sp. strain PCC6301, a cyanobacterium.. Journal of Bacteriology 169:632–639
    [Google Scholar]
  24. Tandeau De Marsac N. 1977; Occurrence and nature of chromatic adaptation in cyanobacteria.. Journal of Bacteriology 130:82–91
    [Google Scholar]
  25. Thang M.-N., Thang D.-C., Leautey J. 1967; Separation et identification de polynucleotide phosphorylase par electrophorese sur gel polyacrylamide.. Compterendu de l’Académie des sciences, Paris 265: series D 1823–1826
    [Google Scholar]
  26. Valentine R.C., Thang M.-N., Grunberg-Manago M. 1969; Electron microscopy of Escherichia coli polynucleotide phosphorylase molecules and polynucleotide formation.. Journal of Molecular Biology 39:389–391
    [Google Scholar]
  27. Wray W., Boulikas T., Wray V.P., Hancock R. 1971; Silver staining of proteins in polyacrylamide gels.. Analytical Biochemistry 118:197–203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-135-7-2045
Loading
/content/journal/micro/10.1099/00221287-135-7-2045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error