1887

Abstract

Summary: CO fixation and uptake of sugars by were demonstrated by liquid scintillation and microautoradiographic techniques. The theoretical carbon content of a cell in the exponential and stationary growth phases was calculated from size measurements of images of acridine-orange-stained cells. The carbon content of a cell in the exponential phase was 1·25 × 10 mol and for a cell in the stationary phase it was 5 × 10 mol. was shown to obtain all of its cell carbon from CO fixation when it was cultured under aerobic gradient conditions in a mineral salt solution with iron sulphide. Uptake experiments were performed with 1·6 μM-[C]frucose, 1·6 μM-[C]fructose and 1·3 μM-[]sucrose. There was significant uptake of all three sugars. Measurements of respired CO showed that 48%, 25% and 32% of the total amount of incorporated sugar was respired for glucose, fructose and sucrose, respectively. The uptake of glucose increased when the glucose concentration in the growth medium was increased. At a glucose concentration of 10 μM or higher, the cell carbon was derived exclusively from glucose, within the errors of estimation. Mixotrophic growth with 20 μM-glucose decreased the CO fixation to 0·4 × 10 mol carbon per cell, compared to autotrophically grown cells with 1·0 × 10 mol carbon per cell. The addition of 20 μM-glucose gave an increase in cell number in the stationary phase from 1 × 10 to 5 × 10 cells ml.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-11-2657
1991-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/11/mic-137-11-2657.html?itemId=/content/journal/micro/10.1099/00221287-137-11-2657&mimeType=html&fmt=ahah

References

  1. Bowien B., Husemann R., Klintworth R., Windhòvel U. 1987 Microbiai Growth on C1-Compounds21–27 Dordrecht: Martinus Nijhoff Publishers;
    [Google Scholar]
  2. Brock T. D., Madigan M. T. 1988 Biology of Microorganisms568–571 New Jersey: Prentice-Hall;
    [Google Scholar]
  3. Brock T. D., Schlegel H. G. 1989; Introduction. Autotrophic Bacteria1–16 Schlegel H. G., Bowien B. Berlin: Springer-Verlag;
    [Google Scholar]
  4. Fry J. C. 1990; Direct methods and biomass estimation. Methods in Microbiology 22:41–85
    [Google Scholar]
  5. Gottschalk G. 1986 Bacterial Metabolism12–36 New York: Springer-Verlag;
    [Google Scholar]
  6. Hallbeck L., Pedersen K. 1990; Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea . Journal of General Microbiology 136:1675–1680
    [Google Scholar]
  7. Hanert H. H. 1981; The genus Gallionella . The Procaryotes509–515 Starr M. P., Triiper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  8. Hanert H. H. 1989; Budding and/or appendaged bacteria. Bergey’s Manual of Systematic Bacteriology1974–1979 Staley M. P., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of nuclepore filter for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33:1225–1228
    [Google Scholar]
  10. Huffman E. W. D. Jr 1977; Performance of a new automatic carbon dioxide coulometer. Microchemical Journal 22:567–573
    [Google Scholar]
  11. Ingraham L. J., Maaloe O., Neidhardt F. C. 1983 Growth of the Bacterial Cell1–48 Sunderland: Sinauer Associates;
    [Google Scholar]
  12. Jorgensen B. B. 1989; Biogeochemistry of chemoautotrophic bacteria. Autotrophic Bacteria117–146 Schlegel H. G., Bowien B. Berlin: Springer-Verlag;
    [Google Scholar]
  13. Kelly D. P. 1989; Physiology and biochemistry of unicellular sulfur bacteria. Autotrophic Bacteria193–218 Schlegel H. G., Bowien B. Berlin: Springer-Verlag;
    [Google Scholar]
  14. Kucera S., Wolfe R. S. 1957; A selective enrichment method for Gallionella ferruginea . Journal of Bacteriology 74:344–349
    [Google Scholar]
  15. Leadbeater L., Bowien B. 1984; Control of autotrophic carbon assimilation in Alcaligenes eutrophus by inactivation and reactivation of phosphoribulokinase. Journal of Bacteriology 157:95–99
    [Google Scholar]
  16. Lutters-Czekalla S. 1990; Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source. Archives of Microbiology 154:417–421
    [Google Scholar]
  17. Nelson M. J. K., Terlesky K. C., Ferry J. G. 1987; Recent developments on the biochemistry of methanogenesis from acetate. Microbiai Growth on C1 Compounds70–76 Verseveld H. W., Duine J. A. Dordrecht: Martinus Nijhoff;
    [Google Scholar]
  18. Pronk J. T., Meulenberg R., van den Berg D. J. C, Batenburg- van der Vegte W., Bos P., Kuenen J. 1990; Mixotrophic and autotrophic growth of Thiobacillus acidopholus on glucose and thiosulfate. Applied and Environmental Microbiology 56:3395–3401
    [Google Scholar]
  19. Stanier R. Y., Ingraham J. I., Wheelis M. L., Painter P. R. 1989 General Microbiology390–391 New Jersey: Prentice Hall;
    [Google Scholar]
  20. Tabita R., Lundgren D. G. 1971; Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans . Journal of Bacteriology 108:328–333
    [Google Scholar]
  21. Tabor P. S., Neihof R. A. 1982; Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters. Applied and Environmental Microbiology 44:945–953
    [Google Scholar]
  22. Winogradsky S. 1922; Eisenbakterien als Anorgoxydanten. Zen-tralblattfur Bakteriologie 57:1–21
    [Google Scholar]
  23. Wood H. G. 1989; Past and present of CO2 utilization. Autotrophic Bacteria33–52 Schlegel H. G., Bowien B. Berlin: Springer-Verlag;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-11-2657
Loading
/content/journal/micro/10.1099/00221287-137-11-2657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error