1887

Abstract

Summary: The subsite maps of two purified glucoamylases (P and S) from the fungus were determined from kinetic data using sets of linear malto-and isomaltooligosaccharides as substrates. Glucoamylase P, which has an unusually high debranching (1,6-glucosidic) activity, showed a subsite map different from all known subsite maps of glucoamylases. The free energy of binding of maltooligosaccharides was negative at subsite 1, whereas all the others show a positive or zero energy at subsite 1. Inhibition of both glucoamylases P and S acting on either malto- or isomaltohexaose by gluconolactone [-glucono-(1,5)-lactone] was investigated. Gluconolactone decreased the values of the maximum velocity, , suggesting it can bind to subsite 1. The size of inhibition constants, identified as dissociation constants of gluconolactone from free enzyme, depended on whether the substrate was maltohexaose or isomaltohexaose. This suggests that gluconolactone has at least two binding sites, and that there are different subsites 1 (or 2) for 1,4- and 1,6-linked substrates. From previously reported results with other glucoamylases, an “induced fit” model was constructed for glucoamylases hydrolysing oligosaccharides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-4-1001
1991-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/4/mic-137-4-1001.html?itemId=/content/journal/micro/10.1099/00221287-137-4-1001&mimeType=html&fmt=ahah

References

  1. Abdullah M., Fleming I. D., Taylor P. M., Whelan W. J. 1963; Substrate specifity of the amyloglucosidase of Aspergillus niger.. Biochemical Journal 89:35P–36P
    [Google Scholar]
  2. Ashikari T., Nakamura N., Tanaka Y., Kiuchi N., Shibano Y., Tanaka T., Awachi T., Yoshizumi H. 1986; Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast.. Agricultural and Biological Chemistry 50:957–964
    [Google Scholar]
  3. Clarke A. J., Svensson B. 1984; Identification of essential tryptophanyl residue in the primary structure of glucoamylase G2 from Aspergillusniger . Carlsberg Research Communications 49:559–566
    [Google Scholar]
  4. Fagerström R., Vainio A., Suoranta K., Pakula T., Kalkkinen N., Torkkeli H. 1990; Comparison of two glucoamylases from Hormoconis resinae . Journal of General Microbiology 136:913–920
    [Google Scholar]
  5. Fersht A. R., Shi J.-P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Wave M. M. Y., Winter G. 1985; Hydrogen bonding and biological specificity analysed by protein engineering.. Nature, London 314:235–238
    [Google Scholar]
  6. Hiromi K. 1970; Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme.. Biochemical and Biophysical Research Communications 40:1–6
    [Google Scholar]
  7. Hiromi K., Hamauzu Z-I., Takahashi K., Ono S. 1966a; Kinetic studies on gluc-amylase. II. Competition between two types of substrate having α-1,4 and α-1,6 glucosidic linkage.. Journal of Biochemistry 59:411–418
    [Google Scholar]
  8. Hiromi K., Takahashi K., Hamauzu Z-I., Ono S. 1966b; Kinetic studies on gluc-amylase. III. The influence of pH on the rates of hydrolysis of maltose and panose.. Journal of Biochemistry 59:469–475
    [Google Scholar]
  9. Hiromi K., Kawai M., Ono S. 1966c; Kinetic studies on gluc-amylase. IV. Hydrolysis of isomaltose.. Journal of Biochemistry 59:476–480
    [Google Scholar]
  10. Hiromi K., Nitta Y., Numata C, Ono S. 1973a; Subsite affinities of glucoamylase: Examination of the validity of the subsite theory.. Biochimica et Biophysica Acta 302:362–375
    [Google Scholar]
  11. Hiromi K., Kawai M., Suetsugu N., Nitta Y., Hosotani T., Nagao A., Nakajima T., Ono S. 1973b; Kinetic studies on glucoamylase. VI. Inhibition of substrate analogues.. Journal of Biochemistry 74:935–943
    [Google Scholar]
  12. Hiromi K., Tanaka A., Ohnishi M. 1982; Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase.. Biochemistry 21:102–107
    [Google Scholar]
  13. Hiromi K., Ohnishi M., Tanaka A. 1983; Subsite structure and ligand binding mechanism of glucoamylase.. Molecular and Cellular Biochemistry 51:79–95
    [Google Scholar]
  14. Itoh T., Ohtsuki I., Yamashita I., Fukui S. 1987; Nucleotide sequence of the glucoamylase gene GLU1 in yeast Saccharomycopsis fibuligera . Journal of Bacteriology 169:4171–4176
    [Google Scholar]
  15. Koyama T., Inokuchi N., Kikuchi Y., Shimada H., Iwama M., Takahashi T., Irie M. 1984; Subsite affinity of a glucoamylase from Aspergillus saitoi . Chemical Pharmacology Bulletin 32:757–761
    [Google Scholar]
  16. McCleary B. V., Anderson M. A. 1980; Hydrolysis of α-D-glucans and α-D-glucooligosaccharides by Cladosporium resinae glucoamylases.. Carbohydrate Research 86:77–96
    [Google Scholar]
  17. Meacher M. M., Nikolov Z. L., Reilly P. J. 1989; Subsite mapping of Aspergillus niger glucoamylases I and II with malto- and isomaltooligosaccharides.. Biotechnology and Bioengineering 34:681–688
    [Google Scholar]
  18. Monma M., Yamamoto Y., Kainuma K. 1989; Subsite structure of Chlara paradoxa glucoamylase and interaction of the glucoamylase with cyclodextrins.. Agricultural and Biological Chemistry 53:1503–1508
    [Google Scholar]
  19. Nikolov Z. L., Meagher M. M., Reilly P. J. 1989; Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II.. Biotechnology and Bioengineering 34:694–704
    [Google Scholar]
  20. Nunberg J. H., Meade J. H., Cole G., Lawyer F., C, McCabe P., Schweichart V., Tal R., Wittman V. P., Flatgaard F. E., Innis M. A. 1984; Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori . Molecular and Cellular Biology 4:2306–2315
    [Google Scholar]
  21. Ohnishi M., Hiromi K. 1976; Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimid.. Journal of Biochemistry 79:11–16
    [Google Scholar]
  22. Ohnishi M., Kegai H., Hiromo K. 1975; Studies on the subsite structure of amylases. I. Interaction of glucoamylases with substrate and analogues studied by difference-spectrophotometry.. Journal of Biochemistry 77:695–703
    [Google Scholar]
  23. Ohnishi M., Yamashita T., Hiromi K. 1976; Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizonus niveus . Journal of Biochemistry 79:1007–1012
    [Google Scholar]
  24. Ono S., Hiromi K., Zimbo M. 1964; Kinetic studies of gluc-amylase. I. The influence of chain length of linear substrates on the rate parameters.. Journal of Biochemistry 55:315–320
    [Google Scholar]
  25. Ono K., Shintani K., Shigeta S., Oka S. 1988; Comparative studies of various molecular species in Aspergillus niger glucoamylase.. Agricultural and Biological Chemistry 52:1699–1706
    [Google Scholar]
  26. Scopes R. K. 1974; Measurement of protein by spectrophotometry at 205 nm.. Analytical Biochemistry 59:277–282
    [Google Scholar]
  27. Shimihara K., Takahashi T. 1970; An infrared spectrophoto-metric study on the interconversion and hydrolysis of D-glucono-?-and -δ-lactone in deuterium oxide.. Biochimica et Biophysica Acta 201:401–415
    [Google Scholar]
  28. Sierks M. R., Ford C., Reilly P., Svensson B. 1989; Site-directed mutagenesis at the active site Trpl20 of Asnergillus awamori glucoamylase.. Protein Engineering 2:621–625
    [Google Scholar]
  29. Sierks M. R., Ford C., Reilly P., Svensson B. 1990; Catalytic mechanism of fungal glucoamylases as defined by mutagenesis of Asp 176, Glu 179 and Glu 180 in the enzyme from Aspergillus awamori . Protein Engineering 3:193–198
    [Google Scholar]
  30. Suetsugu N., Hirooka E., Yasui H., Hiromi K., Ono S. 1973; Kinetic studies on glucoamylase. V. Hydrolyses of phenyl α-glucosides and phenyl α-maltosides.. Journal of Biochemistry 73:1223–1232
    [Google Scholar]
  31. Svensson B., Larsen K., Svedsen I., Boel E. 1983; The complete amino acid sequence of the glycoprotein, glucoamylase Gl, from Aspergillus niger . Carlsberg Research Communications 48:529–544
    [Google Scholar]
  32. Tanaka Y., Ohnishi M., Hiromi K. 1982; Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase.. Biochemistry 21:107–113
    [Google Scholar]
  33. Tanaka A., Fukuchi Y., Ohnishi M., Hiromi K., Aibara S., Morita Y. 1983a; Fractionation of isozymes and determination of the subsite structure of glucoamylase from Rhizopus niveus . Agricul-tural and Biological Chemistry 41:573–580
    [Google Scholar]
  34. Tanaka A., Yamashita T., Ohnishi M., Hiromi K. 1983b; Steady-state and transient kinetic studies on the binding of maltooligosaccharides to glucoamylase.. Journal of Biochemistry 93:1037–1043
    [Google Scholar]
  35. Tanaka Y., Ashikari T., Nakamura N., Kiuchi N., Shibano Y., Amachi T., Yoshizumi H. 1986; Comparison of amino acid sequences of three glucoamylases and their structure-function relationships.. Agricultural and Biological Chemistry 50:965–969
    [Google Scholar]
  36. Wilkinson G. N. 1961; Statistical estimations in enzyme kinetics.. Biochemical Journal 80:324–332
    [Google Scholar]
  37. Yamashita I., Suzuki K., Fukui S. 1985; Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus . Journal of Bacteriology 161:567–573
    [Google Scholar]
  38. Yamashita I., Nakamura M., Fukui S. 1987; Gene fusion is a possible mechanism underlying the evolution of STA1 . Journal of Bacteriology 169:2142–2149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-4-1001
Loading
/content/journal/micro/10.1099/00221287-137-4-1001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error