1887

Abstract

To investigate the relationship between DNA content and cell volume, we have attempted to repeat the construction of stable diploid cells through protoplast fusion. Colonies with a biparental phenotype and those with a prototrophic phenotype were identified among exfusants of a cross between two polyauxotrophic strains. The ploidy of cells constituting such colonies was assessed by protoplast self-fusion, determination of the DNA to dry weight ratio of exponentially growing cells, and by quantitative DNA-DNA hybridization. Within the precision of these methods, all colonies were found to consist of haploid cells. A previously described non-complementing diploid was also found to be haploid. Therefore, the genetic evidence in favour of diploidy, based on continuing segregation of cells with a parental or recombinant phenotype, cannot be accounted for except by the maintenance of such cells as a minority population in mixed colonies through cross-feeding. Reconstruction experiments with mixtures of whole parental cells confirm that biparental colonies are indeed mixed colonies which arise either by sticking of parental cells or through coincidence, i.e. their plating within a distance of about 0·4 mm. The previously reported experimental results can be accounted for in the light of our results.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-138-6-1077
1992-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/138/6/mic-138-6-1077.html?itemId=/content/journal/micro/10.1099/00221287-138-6-1077&mimeType=html&fmt=ahah

References

  1. Bohin J. P., Ben Khalifa K., Guillen N., Schaeffer P., Hirschbein L. 1982; Phenotypic expression in vivo and transforming activity in vitro: two related functions of folded bacterial chromosomes. Molecular and General Genetics 185:65–68
    [Google Scholar]
  2. Bremer H., Dennis P. P. 1987; Modulation of chemical composition and other parameters of the cell by growth rate. Escherichia coli and Salmonella thyphimurium : Cellular and Molecular Biology 2:1527–1542 Neidhart F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Budman D. R., Pardee A. B. 1967; Thymidine and thymine incorporation into deoxyribonucleic acid : inhibition and repression by uridine of thymidine Phosphorylase of Escherichia coli . Journal of Bacteriology 94:1546–1550
    [Google Scholar]
  4. Burkholder P. R., Giles N. H. 1947; Induced biochemical mutations in Bacillus subtHis . American Journal of Botany 34:345–348
    [Google Scholar]
  5. Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. 1988; The PMTL nur cloning vectors. I. Improved pUC polylinker region to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149
    [Google Scholar]
  6. Del Sal G., Manfioletti G., Schneider C. 1988; A one-tube plasmid DNA mini-preparation suitable for sequencing. Nucleic Acids Research 16:9878
    [Google Scholar]
  7. Donachie W. D. 1968; Relationship between cell size and time of initiation of DNA replication. Nature, London 219:1077–1079
    [Google Scholar]
  8. Eng R. H. K, Padberg F. T., Smith S. M., Tan N. N., Cherubin C. E. 1991; Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrobial Agents and Chemotherapy 35:1824–1828
    [Google Scholar]
  9. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  10. Ferrari E., Henner D. J., Hoch J. A. 1981; Isolation of Bacillus subtilis genes from a Charon 4A library. Journal of Bacteriology 146:430–432
    [Google Scholar]
  11. Fleischer E. R., Vary P. S. 1985; Genetic analysis of fusion recombinants and presence of noncomplementing diploids in Bacillus megaterium . Journal of General Microbiology 131:919–926
    [Google Scholar]
  12. Fodor K., Alfoldi L. 1976; Fusion of protoplasts of Bacillus megaterium . Proceedings of the National Academy of Sciences of the United States of America 73:2147–2150
    [Google Scholar]
  13. Fodor K., Lippai-Csanady L., Alfoldi L. 1983; A search for biparentals in Bacillus megaterium . Experientia (supplementum) 45:328–329
    [Google Scholar]
  14. Gabor M. H., Hotchkiss R. D. 1979; Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts. Journal of Bacteriology 137:1346–1353
    [Google Scholar]
  15. Gabor M. H., Hotchkiss R. D. 1982; Analysis of randomly picked genetic recombinants from Bacillus subtilis protoplast fusion. Genetic Exchange: a Celebration and a New Generation283–292 Streips U. N., Goodgal S. H., Guild W. R., Wilson G. A. New York: Dekker;
    [Google Scholar]
  16. Gabor M. H., Hotchkiss R. D. 1983; Reciprocal and nonrecipro-cal recombination in diploid clones from Bacillus subtilis protoplast fusion: association with the replication origin and terminus. Proceedings of the National Academy of Sciences of the United States of America 80:1426–1430
    [Google Scholar]
  17. Guillen N., Sanchez-Rivas C, Hirschbein L. 1983; Absence of functional RNA encoded by a silent chromosome in non-complementing diploids obtained from protoplast fusion in Bacillus subtilis . Molecular and General Genetics 191:81–85
    [Google Scholar]
  18. Gulllen N., Amar M., Hirschbein L. 1985; Stabilized non-complementing diploids (Ned) from fused protoplast products of B. subtilis . EMBO Journal 4:1333–1338
    [Google Scholar]
  19. Hotchkiss R. D., Gabor M. H. 1980; Biparental products of bacterial protoplast fusion showing unequal parental chromosome expression. Proceedings of the National Academy of Sciences of the United States of America 77:3553–3557
    [Google Scholar]
  20. Ives C. L., Bott K. F. 1990; Characterization of chromosomal DNA amplifications with associated tetracycline resistance in Bacillus subtilis . Journal of Bacteriology 172:4936–4944
    [Google Scholar]
  21. Karamata D., Gross J. D. 1970; Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Molecular and General Genetics 108:277–287
    [Google Scholar]
  22. Karmazyn-Campelli C, Savelli B., Rogers H. J., Schaeffer P. 1985; Inverse relationship between formation of phenotypically recombinant clones and cell wall regeneration after fusion οι Bacillus subtilis protoplasts. Journal of General Microbiology 131:1635–1638
    [Google Scholar]
  23. Levi C. 1978 Etude genetique et cytologique de la fusion cellulaire chez Bacillus subtilis et Escherichia coli. These de 3eme cycle, Universite de Paris-sud, Centre d’ Orsay
    [Google Scholar]
  24. Levi C, Sanchez-Rivas C, Schaeffer P. 1977; Further genetic studies on the fusion of bacterial protoplasts. FEMS Microbiology Letters 2:323–326
    [Google Scholar]
  25. Levi-Meyrueis C, Sanchez-Rivas C., Schaeffer P. 1980; Formation de bacteries diploides stables par fusion de protoplastes de Bacillus subtilis et effet de mutations rec~ sur les produits de fusion formes. Comptes Rendus de l’ Academie des Sciences, Paris D291:67–70
    [Google Scholar]
  26. Lopez F., Guillen N., Hirschbein L. 1986; Further characterization of the inactive chromosome from Bacillus subtilis stabilized noncomplementing diploids. Bacillus Molecular Genetics and Biotechnology Applications73–86 Ganesan A. T., Hoch J. A. New York: Academic Press;
    [Google Scholar]
  27. Lorenz M. G., Aardema B. W., Wackernagel W. 1988; Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. Journal of General Microbiology 134:107–112
    [Google Scholar]
  28. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  30. Niaudet B., Goze A., Ehrlich S. D. 1982; Insertional mutagenesis in Bacillus subtilis: mechanism and use in gene cloning. Gene 19:277–284
    [Google Scholar]
  31. Niaudet B., Janniere L., Ehrlich S. D. 1985; Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements. Journal of Bacteriology 163:111–120
    [Google Scholar]
  32. Petit M.-A., Joliff G., Mesas J. M., Klier A., Rapoport G., Ehrlich S. D. 1990; Hypersecretion of a cellulase from Clostridium thermocellum in Bacillus subtilis by induction of chromosomal DNA amplification. Biol technology 8:559–563
    [Google Scholar]
  33. Romanowski G., Lorenz M. G., Wackernagel W. 1991; Adsorption of plasmid DNA to mineral surfaces and protection against DNasel. Applied and Environmental Microbiology 57:1057–1061
    [Google Scholar]
  34. Rutberg L. 1969; Mapping of a temperate bacteriophage active on Bacillus subtilis . Journal of Virology 3:38–44
    [Google Scholar]
  35. Sanchez-Rivas C. 1982; Direct selection of complementing diploids from PEG-induced fusion of Bacillus subtilis protoplasts. Molecular and General Genetics 185:329–333
    [Google Scholar]
  36. Sanchez-Rivas C, Levi-Meyrueis C, Lazard-Monier F., Schaeffer P. 1982; Diploid state of phenotypically recombinant progeny arising after protoplast fusion in Bacillus subtilis . Molecular and General Genetics 214:321–324
    [Google Scholar]
  37. Schaeffer P., Millet J., Aubert J.-P. 1965; Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America 54:704–711
    [Google Scholar]
  38. Schaeffer P., Cami B., Hotchkiss R. D. 1976; Fusion of bacterial protoplasts. Proceedings of the National Academy of Sciences of the United States of America 73:2151–2155
    [Google Scholar]
  39. Schlaeppi J.-M., Pooley H. M., Karamata D. 1982; Identification of cell wall subunits in Bacillus subtilis and analysis of their segregation during growth. Journal of Bacteriology 149:329–337
    [Google Scholar]
  40. Schneider A.-M., Gaisne M., Anagnostopoulos C. 1982; Genetic structure and internal rearrangements of stable merodi-ploids from Bacillus subtilis strains carrying the trpE26 mutation. Genetics 101:189–210
    [Google Scholar]
  41. Tilby M. J. 1978; Detergent-resistant variants of Bacillus subtilis with reduced cell diameter. Journal of Bacteriology 136:10–18
    [Google Scholar]
  42. Trach K., Hoch J. A. 1989; The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. Journal of Bacteriology 171:1362–1371
    [Google Scholar]
  43. Wyrick P. B., Rogers H. J. 1973; Isolation and characterization of cell wall-defective variants of Bacillus subtilis and Bacillus licheniformis . Journal of Bacteriology 116:456–465
    [Google Scholar]
  44. Young M., Hranueli D. 1988; Chromosomal gene amplification in Gram-positive bacteria. Recombinant DNA and Bacterial Fermentation157–200 Thompson J. A. Boca Raton, FL: CRC Press;
    [Google Scholar]
  45. Young M., Mauel C, Margot P., Karamata D. 1989; Pseudoallele relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Molecular Microbiology 3:1805–1812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-138-6-1077
Loading
/content/journal/micro/10.1099/00221287-138-6-1077
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error