1887

Abstract

, isolated from the rhizosphere of field-grown sugar beet, produced the extracellular enzymes chitinase and protease and inhibited the growth of the phytopathogenic fungus The role of these lytic enzymes in the interaction between W81 and was investigated using Tn insertion mutants of W81 incapable of producing extracellular protease (W81M1), extracellular chitinase (W81M2) or the two enzymes (W81A1). Lytic enzyme activity was restored in W81A1 following introduction of a 15 kb cosmid-borne fragment of W81 genomic DNA. Incubation of in the presence of commercial purified protease or cell-free supernatants from cultures of wild-type W81, the chitinase-negative mutant W81M2 or the complemented derivative W81A1 (pCU800) resulted in hyphal lysis and loss of subsequent fungal growth ability once re-inoculated onto fresh plates. In contrast, commercial purified chitinase or cell-free supernatants from cultures of the protease-negative mutant WS1M1 or the chitinase- and protease-negative mutant W81A1 had no effect on integrity of the essentially chitin-free and did not prevent subsequent growth of the fungus. In soil microcosms containing soil naturally infested by spp., strains W81, W81M2 and W81A1(pCU800) reduced the ability of spp. to colonize the seeds of sugar beet and improved plant emergence compared with the untreated control, whereas W81A1 and W21M1 failed to protect sugar beet from damping-off. Wild-type W81 and its mutant derivatives colonized the rhizosphere of sugar beet to similar extents, it was concluded that the ability of W81 to protect sugar beet from Pythium -mediated damping-off was due to the production of an extracellular protease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-12-3921
1997-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/12/mic-143-12-3921.html?itemId=/content/journal/micro/10.1099/00221287-143-12-3921&mimeType=html&fmt=ahah

References

  1. Alabouvette C., Lemanceau P., Steinberg C. 1993; Recent advances in the biological control of fusarium wilts.. Pestic Sci 37:365–373
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool.. J Mol Biol 215:403–410
    [Google Scholar]
  3. Atlas R.M., Bartha R. 1993 Microbial Ecology: Fundamentals and Applications. Redwood City, CA: Benjamin Cummings;
    [Google Scholar]
  4. Becker J.O., Schwinn F.J. 1993; Control of soil-borne pathogens with living bacteria and fungi: status and outlook.. Pestic Sci 37:355–363
    [Google Scholar]
  5. Berg G., Marten P., Ballin G. 1996; Stenotrophomonas maltophilia in the rhizosphere of oilseed rape: occurrence, characterisation and interaction with phytopathogenic fungi.. Microbiol Res 151:19–27
    [Google Scholar]
  6. Black T.A., Cai Y., Wolk C.P. 1993; Spacial expression and autoregulation of betR, a gene involved in the control of heterocyst development in Anabaena.. Mol Microbiol 9:77–84
    [Google Scholar]
  7. Blake R.C. II Choate D.M., Bardhan S., Revis N., Barton L.L., Zocco T.G. 1993; Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site.. Environ Toxicol Chem 12:1365–1376
    [Google Scholar]
  8. Boyer H.W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli.. J Mol Biol 41:459–472
    [Google Scholar]
  9. Carroll H., Moënne-Loccoz Y., Dowling D.N., O´Gara F. 1995; Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2,4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets.. Appl Environ Microbiol 61:3002–3007
    [Google Scholar]
  10. Casadaban M., Cohen S.N. 1980; Analysis of gene control signals by DNA fusion and cloning in Escherichia coli.. J Mol Biol 138:179–207
    [Google Scholar]
  11. Castric K.F., Castric P.A. 1983; Method for rapid detection of cyanogenic bacteria.. Appl Environ Microbiol 45:701–702
    [Google Scholar]
  12. Chernin L., Ismailov Z., Haran S., Chet I. 1995; Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens.. Appl Environ Microbiol 61:1720–1726
    [Google Scholar]
  13. Cohen M.F., Meeks J.C., Cai Y.A., Wolk C.P. 1997; Transposon mutagenesis of heterocyst-forming filamentous cyanobacteria.. Methods Enzymol (in press)
    [Google Scholar]
  14. Cook R.J. 1993; Making greater use of introduced microorganisms for biological control of plant pathogens.. Annu Rev Phytopathol 31:53–80
    [Google Scholar]
  15. Cook R.J., Thomashow L.S., Weller D.M., Fujimoto D., Mazzola M., Bangera G., Kim D.S. 1995; Molecular mechanisms of defence by rhizobacteria against root disease.. Proc Natl Acad Sci USA 924197–4201
    [Google Scholar]
  16. Cronin D., Moënne-Loccoz Y., Fenton A., Dunne C., Dowling D.N., O´Gara F. 1997; Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain FI 13 with the potato cyst nematode Globodera rostochiensis.. Appl Environ Microbiol 63:1357–1361
    [Google Scholar]
  17. Ditta G., Stanfield S., Corbin D., Helinski D.R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti.. Proc Natl Acad Sci USA 777347–7351
    [Google Scholar]
  18. Dowling D.N., O´Gara F. 1994; Metabolites of Pseudomonas involved in the biocontrol of plant disease.. Trends Biotechnol 12:133–141
    [Google Scholar]
  19. Dowling D.N., Sexton R., Fenton A., Delany I., Fedi S., McHugh B., Callanan M., Moënne-Loccoz Y., O´Gara F. 1996; Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control.. In Molecular Biology of Pseudomonads pp. 502–511 Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Dunne C., Delany I., Fenton A., Lohrke S., Moënne-Loccoz Y., O´Gara F. 1996; The biotechnology and application of Pseudo-monas inoculants for the biocontrol of phytopathogens.. In Biology of Plant-Microbe Interactions pp. 441–448 Edited by Stacey G., Mullin B., Gresshoff P. M. >St Paul, MI: International Society for Molecular Plant-Microbe Interactions;
    [Google Scholar]
  21. Dunne C., Delany I., Fenton A., O´Gara F. 1997; Mechanisms involved in biocontrol by microbial inoculants.. Agronomie 16:721–729
    [Google Scholar]
  22. Fedi S., Brazil D., Dowling D.N., O´Gara F. 1996; Construction of a modified mini-Tn5 lacZY non-antibiotic marker cassette: ecological evaluation of a lacZY marked Pseudomonas strain in the sugarbeet rhizosphere.. FEMS Microbiol Lett 135:251–257
    [Google Scholar]
  23. Fenton A.M., Stephens P.M., Crowley J., O´Callaghan M., O´Gara F. 1992; Exploitation of gene(s) involved in 2,4- diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain.. Appl Environ Microbiol 58:3873–3878
    [Google Scholar]
  24. Fernandez-Pinas F., Leganes F., Wolk C.P. 1994; A third locus required for the formation of heterocysts in Anabaena sp. strain PCC7120.. J Bacteriol 176:5277–5283
    [Google Scholar]
  25. Flores A., Chet I., Herrera-Estrella A. 1997; Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prbl.. Curr Genet 31:30
    [Google Scholar]
  26. Foster R.C., Rovira A.D., Cock T.W. 1983 Ultrastructure of the Root-Soil Interface. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  27. Fridlender M., Inbar J., Chet I. 1993; Biological control of soilborne plant pathogens by a >9-1,3 glucanase-producing Pseudomonas cepacia.. Soil Biol Biochem 25:1211–1221
    [Google Scholar]
  28. Gaffney T.D., Lam S.T., Ligon J. and 9 other authors 1994; Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain.. Mol Plant-Microbe Interact 7:455–463
    [Google Scholar]
  29. Geremia R.A., Goldman G.H., Jacobs D., Ardiles W., Vila S.B., Van Montagu M., Herrera-Estrella A. 1993; Molecular characterisation of the proteinase-encoding gene, prbl, related to mycoparasitism by Trichoderma harzianum.. Mol Microbiol 8:603–613
    [Google Scholar]
  30. Gould W.D., Hagedorn C., Bardinelli T.R., Zablotowicz R.M. 1985; New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats.. Appl Environ Microbiol 49:28–32
    [Google Scholar]
  31. Haran S, Schickler H., Chet I. 1996; Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum.. Microbiology 142:2321–2331
    [Google Scholar]
  32. Hrabak E.M., Willis D.K. 1993; Involvement of the lemA gene in production of syringomycin and protease by Pseudomonas syringae pv. syringae.. Mol Plant-Microbe Interact 6:368–375
    [Google Scholar]
  33. Jeffers S.N., Martin S.B. 1986; Comparison of two media selective for Phytopbtbora and Pytbium spp.. Plant Dis 70:1038–1043
    [Google Scholar]
  34. Keel C., Défago G. 1997; Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact.. In Multitrophic Interactions in Terrestrial Systems pp. 27–46 Edited by Gange A. C., Brown V. K. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  35. Keel C., Voisard C., Berling C.H., Kahr G., Défago G. 1989; Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions.. Phytopathology 79:584–589
    [Google Scholar]
  36. Keel C., Schnider U., Maurhofer M., Voisard G, Laville J., Burger U., Wirthner P., Haas D., Défago G. 1992; Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol.. Mol Plant-Microbe Interact 5:4–13
    [Google Scholar]
  37. Kobayashi D.Y., Gugielmoni M., Clarke B.B. 1995; Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass.. Soil Biol Biochem 27:1479–1487
    [Google Scholar]
  38. Kragelund L., Christoffersen B., Nybroe O., de Bruijn F.J. 1995; Isolation of lux reporter gene fusions in Pseudomonas fluorescens DF57 inducible by nitrogen or phosphorus starvation.. FEMS Microbiol Ecol 17:95–106
    [Google Scholar]
  39. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D. 1992; Global, stationary-phase control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.. Proc Natl Acad Sci USA 891562–1566
    [Google Scholar]
  40. Leeman M., van Pelt J.A., den Ouden F.M., Heinsbroek M., Bakker P.A.H.M., Schippers B. 1995; Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay.. Eur J Plant Pathol 101:655–664
    [Google Scholar]
  41. Lemanceau P., Alabouvette C. 1991; Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium.. Crop Prot 10:279–286
    [Google Scholar]
  42. Loper J.E., Henkels M.D. 1997; Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene.. Appl Environ Microbiol 63:99–105
    [Google Scholar]
  43. Lorito M., Peterbauer C., Hayes C.K., Harman G.E. 1994; Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination.. Microbiology 140:623–629
    [Google Scholar]
  44. Mclnroy J.A., Kloepper J.W. 1994; Studies on indigenous endophytic bacteria on sweet corn and cotton.. In Molecular Ecology of Rhizosphere Microorganisms pp. 19–28 Edited by O´Gara F., Dowling D. N., Boesten B. Weinheim: VCH;
    [Google Scholar]
  45. McKellar R.G. 1981; Development of off-flavour in ultra-high temperature and pasteurized milk is a function of proteolysis.. J Dairy Sci 64:2138–2145
    [Google Scholar]
  46. Mazzola M., Stahlman P.W., Leach J.E. 1995; Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum).. Soil Biol Biochem 27:1271–1278
    [Google Scholar]
  47. Mitchell R., Hurwitz E. 1965; Suppression of Pythium debaryanum by lytic rhizosphere bacteria.. Phytopathology 55:156–158
    [Google Scholar]
  48. Nelson E. B., Harman G. E., Nash G. T. 1988; Enhancement of Trichoderma induced biological control of Pythium seed rot and pre-emergence damping-off of peas.. Soil Biol Biochem 20:145–150
    [Google Scholar]
  49. Oppenheim A.B., Chet I. 1992; Cloned chitinases in fungal plant-pathogen control strategies.. Trends Biotechnol 10:392–394
    [Google Scholar]
  50. O´Sullivan D.J., O´Gara F. 1992; Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens.. Microbiol Rev 56:662–676
    [Google Scholar]
  51. Palleroni N.J., Bradbury J.F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al., 1983.. Int J Syst Bacteriol 43:606–609
    [Google Scholar]
  52. Sacherer P., Défago G., Haas D. 1994; Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0.. FEMS Microbiol Lett 116:155–160
    [Google Scholar]
  53. Sambrook J., Fritsch E.F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Scher F.M., Baker R. 1982; Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens.. Phytopathology 72:1567–1573
    [Google Scholar]
  55. Schwyn B., Neilands J.B. 1987; Universal chemical assay for the detection and determination of siderophores.. Anal Biochem 160:47–56
    [Google Scholar]
  56. Sexton R., Gill P.R. Jr Dowling D.N., O´Gara F. 1996; Transcriptional regulation of the iron-responsive sigma factor gene pbrA.. Mol Gen Genet 250:50–58
    [Google Scholar]
  57. Shanahan P., O´Sullivan D.J., Simpson P., Glennon J.D., O´Gara F. 1992; Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production.. Appl Environ Microbiol 58:353–358
    [Google Scholar]
  58. Simon R., Priefer U., Pühler A. 1983a; Vector plasmids for in vivo and in vitro manipulations of gram-negative bacteria.. In Molecular Genetics of the Bacteria-Plant Interaction pp. 98–106 Edited by Pühler A. Berlin & Heidelberg: Springer;
    [Google Scholar]
  59. Simon R., Priefer U., Pühler A. 1983b; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria.. Bio/Technology 1:784–791
    [Google Scholar]
  60. Simon R., Quandt J., Klipp W. 1989; New derivatives of transposon Tn5 suitable for mobilisation of replicons, generation of operon fusions and induction of genes in gram-negative bacteria.. Gene 80:161–169
    [Google Scholar]
  61. Singer E., Debette J. 1993; Nutritional factors controlling exocellular proteinase production in a soil-isolated Xantbomonas maltophilia strain.. J Basic Microbiol 33:113–121
    [Google Scholar]
  62. Stasz T.E., Harman G.E., Marx G.A. 1980; Time and site of infection of resistant and susceptible germinating pea seeds by Pythium ultimum.. Phytopathology 70:730–733
    [Google Scholar]
  63. Swings J., De Vos P., Van den Mooter M., De Ley J. 1983; Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xantbomonas as Xantbomonas maltophilia (Hugh 1981) comb, nov.. Int J Syst Bacterial 33:409–413
    [Google Scholar]
  64. Thomashow L.S., Weller D.M. 1988; Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.. J Bacterial 170:3499–3508
    [Google Scholar]
  65. Voisard C., Bull C.T., Keel C., Laville J., Maurhofer M., Schnider U., Défago G., Haas D. 1994; Biocontrol of root diseases by Pseudomonas fluorescens CHAO: current concepts and experimental approaches.. In Molecular Ecology of Rhizosphere Microorganisms pp. 67–69 Edited by O´Gara F., Dowling D. N., Boesten B. Weinheim: VCH;
    [Google Scholar]
  66. Wilson M., Lindow S.E. 1994; Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning.. Appl Environ Microbiol 60:4468–4477
    [Google Scholar]
  67. Wolk CP., Cai Y., Panoff J.M. 1991; Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium.. Proc Natl Acad Sci USA 885355–5359
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-12-3921
Loading
/content/journal/micro/10.1099/00221287-143-12-3921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error